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The MIT bag model

This model was introduced by Chodos, Ja↵e, Johnson, Thorn, and
Weisskopf, physicists from the MIT, in order to understand the con-
finement of the quarks/anti-quarks inside the hadrons.

a. Quarks/anti-quarks are elementary particles.

b. Hadrons are particles composed by quarks and anti-quarks.

c. Note that no isolated quark has been observed yet.

d. They only consider bosonic hadrons, i.e. pairs quark/anti-quark.

e. They assume that the pair is perfectly confined in ⌦ ⇢ R3.

f. The quarks are relativistic particles of spin 1
2 .

The region of space ⌦ where the quarks live is called the bag. It is
assumed to be bounded and smooth.
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The Dirac operator

We consider the di↵erential operator of order 1, acting on L2(⌦,C)4,
defined by:

H = �i↵ ·r+m� .

m is the mass of the quark or of the anti-quark.
From a mathematical point of view, m can be positive or negative.
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The Dirac operator

H = ↵ · D +m� , D = �ir .

We have ↵ = (↵1,↵2,↵3). The ↵k and � are 4⇥ 4 Hermitian and
unitary matrices.

� =

✓

12 0
0 �12

◆

, ↵k =

✓

0 �k
�k 0

◆

for k = 1, 2, 3 .

The Pauli matrices �1,�2 and �3 are defined by

�1 =

✓

0 1
1 0

◆

, �2 =

✓

0 �i
i 0

◆

, �3 =

✓

1 0
0 �1

◆

.

The symbol ↵ · X denotes
P3

j=1 ↵jXj for any X = (X1,X2,X3).
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The boundary condition

Now, we must translate the perfect confinement condition mathe-
matically. It is a boundary condition. On @⌦, we impose that the
wavefunctions satisfy

B := �i�(↵ · n) =  ,

where n is the outward pointing normal to the boundary.
This condition is chosen to have no normal quantum current. We
impose that  |@⌦ is an eigenvector of B. Note that B is Hermitian
and that B2 = 14.

If one wants to consider the inward pointing normal situation, we
can just change the boundary condition into B = � which also
implies a perfect confinement.
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Definition of the MIT bag operator

Definition

The MIT bag Dirac operator (H⌦
m,D(H⌦

m)) is defined on the
domain

Dom(H⌦
m) = { 2 H1(⌦,C)4 : B =  on �} ,

by H⌦
m = H for all  2 Dom(H⌦

m).

Note that the trace is well-defined by a classical trace theorem.
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Chirality matrix and negative mass

We introduce the chirality matrix

�5 =

✓

0 12
12 0

◆

.

We notice that

�5 (↵ · D �m�) �5 = ↵ · D +m� , �5B�5 = �B .

Thus, ↵ · D �m� with boundary condition B =  is unitarily
equivalent to ↵ · D +m� with boundary condition B = � .
In other words, if we allow the mass to be negative, the model also
describes the case of the boundary condition B = � .
The spectral behavior of the MIT bag model strongly depends on
the sign of m (or equivalently: the orientation of the normal, the
sign of the boundary condition).
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Properties of the operator related to self-adjointness

Theorem

i. (H,Dom(H)) is a self-adjoint operator with compact resolvent.

ii. We denote by (µn(m))n�1 ⇢ R⇤
+ the eigenvalues of |H|. The

spectrum of H is symmetric with respect to 0 (with
multiplicity) and

sp(H) = {±µn(m), n � 1} .

iii. Each eigenvalue µn(m) has pair multiplicity.

iv. For each  2 Dom(H), we have

kH k2L2(⌦) = k↵ ·r k2L2(⌦) +mk k2L2(@⌦) +m2k k2L2(⌦) ,

k↵ ·r k2L2(⌦) = kr k2L2(⌦) +
1

2

Z

@⌦
| |2ds .
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Let us discuss the proof of the formula for the square of H:
8 2 Dom(H)

kH k2L2(⌦) = m2k k2L2(⌦) + kr k2L2(⌦) +

Z

@⌦

⇣

2
+m

⌘

| |2ds .

Lemma

For all x, y 2 R3, we have

(↵ · x)(↵ · y) = (x · y)14 + i�5↵ · (x⇥ y) ,

�(↵ · x) = �(↵ · x)� , ��5 = ��5� ,
�5(↵ · x) = (↵ · x)�5 .

Lemma (Mean curvature as commutator)

[↵ · (n⇥ D),B] = ��5B .
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We have

kH k2L2(⌦) = h↵·D ,↵·D i⌦+m2h� ,� i⌦+2mReh� ,↵·D i⌦ .

By using that ↵ anticommutes with � and an integration by parts

2 Reh� ,↵·D i⌦ = hi↵·n� , i@⌦ = h�i�↵·n , i@⌦ = k k2L2(@⌦) .

Since � is unitary,

kH k2L2(⌦) = k↵ · D k2L2(⌦) +m2k k2L2(⌦) +mk k2L2(@⌦) .

Assume that  2 H2(⌦). By the Green-Riemann formula

h↵ · D ,↵ · D i⌦ = h , (↵ · D)2 i⌦ + h(�i↵ · n) ,↵ · D i@⌦
= hD ,D i⌦ + ih , ((↵ · n)(↵ · D)� (n · D)) i@⌦

((↵ · D)2 = 14D2 and by another integration by parts)
H2(⌦) dense in H1(⌦), thus it holds for any u 2 Dom(H).
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Relation with shell interactions

In 1 we prove that H + Ves generates confinement w.r.t. � for
�2e � �2s = �4, where

Ves =
1

2
(�e + �s�)( + +  �)d� ,

�e ,�s 2 R,  ± are the non-tangential boundary values of  on �
and d� is the surface measure on �.
We know that

ker(H + Ves � µ) 6= 0 () ker(�s� � �e + 4C�,µ) 6= 0 . (1)

The r.h.s. of (1) is equivalent to the existence of a solution
 2 H1(⌦,C4) of the problem (H � µ) = 0 in ⌦ and
 = i

2 (�e � �s�)(↵ · n) on �.
When �e = 0 and �s = 2 we recover the MIT bag model.

1A., Mas, Vega. Shell interactions for Dirac operators: on the point
spectrum and the confinement. SIAM J. Math. Anal., 2015.
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Non-relativistic limit: positive mass

From the expression for H2, when m ! +1, the operator
H2 �m2 tends, in some sense, towards the Dirichlet Laplacian on
⌦. So, it is a non-relativistic limit since it relates the MIT bag
model (relativistic particles in a box) to the model for
non-relativistic particles in a box.

Theorem

Let ��Dir be the Laplacian with domain H2(⌦,C) \ H1
0 (⌦,C),

and let (µDir
n )n�1 be the non-decreasing sequence of its

eigenvalues. For all n � 1, we have

µn(m)�
✓

m +
1

2m
µDir
n

◆

=
m!+1

o

✓

1

m

◆

.
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Idea of the proof

We work with the operator H2 appearing previously and determine
the asymptotic expansions of its lowest eigenvalues.
For m > 0 and  2 D = { 2 H1(⌦,C)4,  2 ker (B � 14) on �},
we let

Qm( ) = kr k2 +
Z

�

⇣

m +


2

⌘

| |2� .

For  2 H1
0 (⌦,C)4, Q1( ) = kr k2 .

(�j(Qm))j�1 and (�j(Q1))j�1 ⌘ the ordered sequence of
eigenvalues related to the operators associated with Qm and Q1.

Proposition

For all j � 1, we have lim
m!+1

�j(Qm) = �j(Q1) .

Naiara Arrizabalaga Non-relativistic model of the MIT bag model



It is actually possible to describe the next term in the expansion of
the first positive eigenvalue.

Theorem

Let u1 2 H1
0 (⌦,C) be a L2-normalized eigenfunction of the

Dirichlet Laplacian associated with its lowest eigenvalue µDir
1 . We

have

µ1(m)�
✓

m +
1

2m
µDir
1 � 1

2m2

Z

�
|@

n

u1|2d�
◆

=
m!+1

o

✓

1

m2

◆

.

Remark: This asymptotic expansion of µ1(m) coincides with the

one of the first eigenvalue of
q

m2 ��Rob
2m where ��Rob

2m is the

Robin Laplacian of mass 2m, i.e. the operator of L2(⌦,C) whose
quadratic form is defined for u 2 H1(⌦,C) by

u 7�!
Z

⌦
|ru|2dx+ 2m

Z

�
|u|2d�.
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Non-relativistic limit: negative mass

The boundary is attractive for the eigenfunctions with eigenvalues
lying essentially in the Dirac gap [�|m|, |m|] and that their
distribution is governed by the operator

L� � 2

4
+ K ,

where  and K are the trace and the determinant of the
Weingarten map, respectively, and where L� is defined as follows.

Definition

The operator (L�,Dom(L�)) is the self-adjoint operator associated
with the quadratic form

Q�( ) =

Z

�
|rs |2d� , 8 2 H1(�,C)4 \ ker(B � 14) .
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Theorem

Let "0 2 (0, 1) and

N"0,m := {n 2 N⇤ : µn(�m)  m
p
1� "0} .

There exist C�, C+, m0 such that, for all m � m0 and n 2 N"0,m,

µ�
n (m)  µn(�m)  µ+

n (m) ,

with µ±
n (m)being the n-th eigenvalue of the operators L�,±

m of
L2(�,C)4 defined by

L�,�
m =

✓

[1� C�m
� 1

2 ]L� � 2

4
+ K � C�m

�1

◆

1
2

+

,

L�,+
m =

✓

[1 + C+m
� 1

2 ]L� � 2

4
+ K + C+m

�1

◆

1
2

.
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Corollary

For all n 2 N⇤, we have that

µn(�m) =
m!+1

eµ
1
2
n +O(m� 1

2 ),

where (eµn)n2N⇤ is the non-decreasing sequence of the eigenvalues
of the following non-negative operator on L2(�,C)4 \ ker(14 � B):

L� � 2

4
+ K .

When ⌦ = B(0,R), R > 0. Let A = �(1 + 2S · L) where
S = 1

2�5↵ and L = x⇥ D. We have

AB = BA , L� � 2

4
+ K = R�2A2 ,

and its spectrum is {n2/R2, n 2 N⇤}.
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Semiclassical reformulation

Now we rather consider
�

H⌦
�m

�2
and introduce the semiclassical

parameter
h = m�2 ! 0 .

and the semiclassical operator

Lh = h2((H⌦
�m)

2 �m214) ,

whose domain is given by

Dom(Lh) = Dom((H⌦
�m)

2)

=
n

 2 H2(⌦) :  2 ker(B � 14) ,
⇣

@
n

+


2
� h�

1
2

⌘

 2 ker(B + 14) , on �
o

.
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The associated quadratic Qh form is defined by

8 2 Dom(Qh) , Qh( ) = h2kr k2L2(⌦)+

Z

�

⇣

2
h2 � h

3
2

⌘

| |2d� ,

where

Dom(Qh) = Dom(H⌦
�m) =

�

 2 H1(⌦) :  2 ker(B � 14) on �
 

.

The operator Lh is the semiclassical Laplacian with combined MIT
bag condition and Robin condition on the boundary.
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Relations between the eigenvalues of Lh and H⌦
�m

Recall that the spectrum of H⌦
�m is discrete, symmetric with

respect to 0 and with pair multiplicity.
The spectrum of H⌦

�m lying in [�m,m] is given by

⇢

±
q

h�2�n(h) + h�1 : n 2 N⇤ ,�h  �n(h)  0

�

,

where �n(h) denotes the n-th eigenvalue of Lh.
Therefore, we shall focus on the study of the negative eigenvalues
of Lh.
Remark: The theorem for negative mass shares common features
with the known results about the Robin Laplacian in the
semiclassical limit. A major di↵erence is that the e↵ective operator
is a quadratic function of the principal curvatures while is linear in
the Robin case. This is due to the vectorial nature of the MIT
operator.
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Main steps of the proof

(a) By using an Agmon type estimate we see that the
eigenfunctions are localized near the boundary at a scale of
order h

1
2 . Hence, we redefine the operator near the boundary.

(b) We rewrite the operator near the boundary in tubular
coordinates (s, t) 2 �⇥ (0, �).

(c) We perform a change of scale in the normal direction,

(�, ⌧) = (s, h�
1
2 t), that allows us to see something at the

limit.

(d) We relate this operator to a family of one dimensional
operators for which we have an estimate of eigenvalues.

We follow the ideas on 2 and 3.

2B. Hel↵er and A. Kachmar. Eigenvalues for the Robin Laplacian in
domains with variable curvature. To appear in Trans. Amer. Math. Soc., 2015.

3A. Kachmar, P. Keraval, and N. Raymond. Weyl formulae for the Robin
Laplacian in the semiclassical limit. To appear in Confluentes Math. , 2016.
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Thank you.
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