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A nonlinear Dirac equation

We consider the spectral stability of stationary solutions ¢, (x)e~“* to a
nonlinear Dirac equation of the form

10 = Dmyp — F(*BY)BY,  P(x,t) €CY, x€R", (NLD)

where N is even, f(0) = 0, and D,, is the free Dirac operator:

Dp = —ia-V+pBm=> —ia’d, +pm m>0.

J=1
The N X N Dirac matrices are hermitian and satisfy 1 < 3,k < n
(a?)? = 3% = Iy, ook + aka? = 26kl a8+ Ba’ = 0.
Its spectrum is purely absolutely continuous and given by
R\ (—m, m).

We consider values of w in open interval of (—m, m).

?/18

Nabile Boussaid Nonrelativistic asymptotics of solitary waves in the Dirac equation



The linearization

We consider the solution to the nonlinear Dirac equation in the form
P(x, t) = (¢u(x) + p(x, t))e ™",

where ¢, satisfies the stationary equation
Wy = Dmdw — F(¢7,B0u)Bdu,

so that p(x,t) € CN is a “small" perturbation of ¢, (x)e~t. The
linearization at a solitary wave (the linearized equation on p) is given by

Orp = JL(w)p,

where ] = 1/i,

L(w) = Dm — w — F(¢7,B0.)8 — 2R(¢1,8 - ) (97,B8w)Bow,
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Definition

A solitary wave is if the spectrum of the corresponding

linearization does not contain there is not
and not

® The essential spectrum of JL(w) is purely imaginary and its thresholds
are £(m — |w|)i (Weyl's theorem).
® There are embedded thresholds +(m + |w|)i.

For the spectral stability, only the point spectrum and even the discrete
spectrum are relevant.

Notice that

Span {J¢,,, Ox: .} C ker JL(w),
Span {]d)w’ 6w¢w’ axjd)w’ ngq)w - 2wx:’]¢)w} C Ng(IL(w))'
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The nonlinear Schrodinger equation

For the ground state solution ¢, (x)e ™/t of the a nonlinear Schrodinger
equation

0p = —AY — 9|9,  P(x,t) €C, x €R, (NLS)
where k > 0, the linearization is given by
Op = jUw)p,

where

where j ~ 1/i,

Li(w) = 1_(w) —2kR(do” *)|du** Vo, 1_(v) = —A—w—|¢|*
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The nonlinear Schrodinger equation

For the ground state solution ¢, (x)e ™/t of the a nonlinear Schrodinger
equation

0p = —AY — 9|9,  P(x,t) €C, x €R, (NLS)
where k > 0, the linearization is given by
Op = jUw)p,

where
jUw) == (_1+(w) 0

For some ¢ > 0, we have

1 (w)po =0 1_(w) > clyr, c > 0.
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The nonlinear Schrodinger equation

For the ground state solution ¢, (x)e ™/t of the a nonlinear Schrodinger
equation

0p = —AY — 9|9,  P(x,t) €C, x €R, (NLS)
where k > 0, the linearization is given by
Op = jUw)p,

where

jUw)p = Ap = L (@)1 (w)p2 = —N?p,
= /1 (W)l (w)y/1_(w)R = —=A’R

for R = /1_(w)p2 where p; is the second component of p.
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The nonlinear Schrodinger equation

For the ground state solution ¢, (x)e ™/t of the a nonlinear Schrodinger
equation

0p = —AY — 9|9,  P(x,t) €C, x €R, (NLS)
where k > 0, the linearization is given by

Op = jUw)p,

1= (e 67)

o(ji(w)) C RUIR.

where

So

This no longer true for nonlinear Dirac equations.
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The possible “scenari”

Birth of real eigenvalues out of collisions of eigenvalues
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The possible “scenari”

Possible bifurcations from the essential spectrum

b L

'(m lwl)
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The possible “scenari”

Bifurcations from A = 0 and hypothetical bifurcations from A = +2mi in
the nonrelativistic limit, w <m.

2mi / \2‘mi
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Hypothesis
f € C(R) and there exist k > 0, and ¢ > 0 such that

|f(s) —Is|“| = o(Is]), seR

Consider the matrix 3 in the form:

_ Ins2 0 }
B = i[ 0 —Inp

the matrices (of)1<j<n are of the form

0 o
gj 0

o = |: :| ) 1<j<n,
where the (0j)1<j<n are hermitian and satisfies

ojok + oxoj = 20, 1<j,k<n.

Nabile Boussaid re /mptotics of solitary waves in the Dirac equation



Hypothesis
f € C(R) and there exist k > 0, and ¢ > 0 such that

|f(s) —Is|“| = o(Is]), seR

Consider the matrix 3 in the form:

I 0
-l L

—Iny2
the matrices (of)1<j<n are of the form

0 o
gj 0

o = |: :| ) 1<j<n,
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ojok + oxoj = 20, 1<j,k<n.
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We consider the existence of solitary waves of Soler or Wakano type

¢ (x)e It with
b = [ v(r)m }

u(r)y(e,-o)m

if¢=1.
The profiles v and u are real and
1
_ N/2 _ A n _
n = : eC , e = ; e R , o = (UJ)1§JS"°
0

From (NLD), we deduce

r

v+ (m+ w)u = F(v? — v?)u,

{ Oru+ "“Lu 4 (m—w)v = F(v2 — v?)v,

Nabile Boussaid Nonrelativistic asymptotics of solitary waves in the Dirac equation



We consider the existence of solitary waves of Soler or Wakano type
P (x)e™«t with

oo [u(r) (e - ) nl}

v(r)m
if¢=—1.
The profiles v and u are real and
1
_ N/2 . n _
m=1. eC ’ e = r € R, o= (UJ)ISJSIP
0

From (NLD), we deduce

r

v+ (m+ w)u = F(v? — v?)u,

{ Oru+ "“Lu 4 (m—w)v = F(v2 — v?)v,
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Theorem

There exist wy and, for w € (wo, M), a solution of the form:
v(r,w) = e [V(er) + V(er, e)} Lu(r,w) = et [U(er) + O(er, €],

where € and w verify € = vVm? — w2, V(t) = uk(|t|) is even, positive,
exponentially decreasing and C? with

n —

t

1 . 1
~2m7 = 2m(

8% +

t

1 o 5
at) VvV — V2k+l,

and O(t) = —V'(t)/(2m). _ .
There exists 7 > 0 such that V and U verify

e Vi + [le™ Oll = O(1).

°/
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The equation for the couple (\7, U) is given by:

(0 + )0 + 5V = (1 4+ 2K) | VIV — Gi(e, V, D),
{at\"/ + (m 4 w)0 = Gy(e, V, 0),

fort € R, € > 0, where

Gi(e, V,0) = —e 2f(e¥K(V2 — EU?))V + V2V + (1 + 2k)V*kV

+ (ks — ) Vs

Gy(e, V,0) = f(e¥*(V? - €2U?))U + (m — w) 0,

and w = vVm? — €2,
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Let

=288, we]]
nd
i\(e):[ o (}9t+2k)|V|2k —,:'Jr;:l], w=m:—&,

with domain
D(A(¢€)) = H. (R, |t|""dt; C?),

where

H. (R, |t|"~de; C%) := (R, [t|"~1dt; C)x HL 4 (R, |t|"~1dt; C),

similarly for Lia(R, |t|"~1dt; C?), and
A(e) : H. (R, |t|"'dt; C?) — L2 (R, |t|""'dt; C?).

The system takes the form

A(e) W(t7 €) = G(e, W(t9 €)), €>0.

Nabile Boussaid Nonrelativistic asymptotics of solitary waves in the Dirac equation



We have
" oess(A(€)) = (— 00, —#} U {m + w, +oo), e € [0, m].

m+w

= ker AQO)],, . orunen = (O}

1
€ ker A(O
¢ ©

1 ’

= nt)=——-2~¢(t)fort eR
2m

= £(|x|) € ker 1 for x € R",

The restriction of 14 to spherically symmetric functions has zero kernel
=A=0¢g U(A(O)ngo)

A(0)~! is bounded from Lﬁ’o(R, |t|"~1dt; C?) to Hg,o(]R, [t|"~1dt; C?).
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The solitary waves we are looking for are fixed points of the mapping

pry(e ) o L2 (R, [E|"~1dt; C?) N L=(R; C?) — H] (R, (t)"~'dt; C?),
7 — e—2k7<t>AW(E)—le(1+2k)7<t> G (e, e—'r(t>z)

with
t

(t)’

There is ag > 0 such that for Ax := sup,cpn |V(x)| + msup,cp. |U(x)]

A, (€) := e(+207() 5 A(e) 0 e (1+27(E) = A(e) — (1 + 2k)~

My (e, Bp(Xe,o)) C By(X1,), p = agmax (H(ez/k4l\i), ek, 62)
with H such that is monotonically increasing with H(0) = 0 and
() = I71*] < I7I“H(7).

We conclude with Schauder fixed point theorem.
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Lemma

Iff € C(R) and if V, U € C(R), with V even and U odd, then
V, U € C(R)
U(t)/t, t # 0 could be extended to a continuous function on R.
if there is C < oo such that

V(D) +|U()| < C, VteR,

then there is C’ < oo such that

|0:V(t)| + |8:U(t)| < C', vVt € R.
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Back to the linearization

The linearized equation (in p) is given by
i0cp = L(w)p,
with
L(w) = Dm — w — f(¢7,80u,)B — 2f'(¢.,B.)BdR(SL06 - ).

This term is singular where
eTom
vanishes if f(s) = |s|* for k € (0,1).

Nabile Boussaid Nonrelativistic asymptotics of solitary waves in the Dirac equation



Back to the linearization

The linearized equation (in p) is given by
i0p = L(w)p,
with

L(w) =Dy —w— f(¢:,/8¢w):6 - 2f’(¢:ﬁ¢w)ﬂ¢wm(¢:ﬂ : )

Proposition
There exist €1 € (0, €g) such that if e € (0, €1) then

elU(t,€)| < V(t,e€)/2, teR, € € (0,€1);

oL (x)Bdu(x) = [V(Ix])|* = [U(Ix])|* > %(IV(IXI)I2 +U(Ix)).
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Back to the linearization

The linearized equation (in p) is given by
i0cp = L(w)p,
with
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Hypothesis
f € C(R) and there exist k, = € R, k > 0, and ¢ > 0 such that

f(s) —Isl“| < cls| , seR

If n > 3 then k < 2/(n — 2).

We have the improved estimates

le™ OV [ + €7 Ollmn = O(e¥),

where 2 = min (1, % - 1) > 0.
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Hypothesis
f € and that there are k > 0 and K > k such that

|f(r) — ||| = 0(I7["), Tl <L
[Tf'(7) — k|7[*| = O(I7|),  |7| <L

Theorem

There is €3 small enough so that for w = +/ m?2 — €2, e € (0, €2), the
functions ¢.,(x), V(t,€), and U(t, €) are unique.

Moreover, the map w + ¢, € H'(R",CN), is C* and

V(t,e)
U(t,e)

||e7<t>8€ [

} g = 0(EY), e (0,e),

and there is b > 0 such that

— 2 o
||8w¢w||%_2(]Rn,(cN) = be +"(1 + 0(62 ).
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Additionally, assume that either k < 2/n, or k =2/n and K > 4/n.
Then there is w3 < m such that 8, Q(w) < 0 for all w € (w1, m).

If instead k > 2/n, then there is w1 < m such that 8, Q(w) > 0 for all
w € (w1, m).
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