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Dispersive estimates for the massless Dirac equation
The solution to the Cauchy problem

(
i@tu +Du = 0, u(t , x) : Rt ⇥ R3

x ! C4

u(0, x) = f (x)
(1)

where D = i�1
3X

j=1

↵j@j is the 3D Dirac operator satisfies different sets

of dispersive estimates.
Strichartz estimates:

keitDfk
Lp

t Ḣ
1
q � 1

p � 1
2

x

. kfkL2 , (2)

2
p
+

2
q
= 1, 2 < p  1, 2  q < 1.

Applications: crucial tool in the study of nonlinear problems:
local/global well posedness, scattering...

Question: do Strichartz estimates hold in presence of perturbations?
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Local smoothing estimates
We consider the dynamics perturbed with an electric potential

(
i@tu +Du + Vu = 0,
u(0, x) = f (x).

(3)

We consider in particular potentials in the form V (x) = 1
|x |a with a > 0.

The general picture. The homogeneity of the operator works as a
threshold for the validity of Strichartz estimates. In other words, if we
consider the behaviour at |x | >> 1, if a > 1 then Strichartz estimates
hold; if a < 1 then one expects to find counterexamples.

The case a = 1 (Coulomb potential) then represents the threshold: it is
the scaling critical case. Philosophically, it can be compared to the
Schrödinger equation with inverse square potential.

Intermediate estimates: local smoothing estimates take the form

kw(x)�1eit(D+V )fkL2
t L2

x
 kfkL2 (4)

for some weight function w(x).
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From local smoothing to Strichartz (a relevant
example)
Suppose we can prove for the Dirac equation with a Coulomb potential
the following estimate for u = eit(D+ ⌫

|x| )f

k|x |�1/2ukL2
t L2

x
 kfkL2 , (5)

then denoting by Sp,q any admissible Strichartz space we have

kukSp,q . keitDfkSp,q +

����eitD
Z t

0
e�isD

✓
⌫

|x |u(s)
◆

ds
����

Sp,q

. (6)

The perturbation term can be estimated again using free Strichartz
and the dual of local smoothing estimate, i.e.

����
Z

e�is(D+ ⌫
|x| )F (s)ds

����
L2

 k|x |1/2FkL2
t L2

x

in the case ⌫ = 0, thus yielding

(6) .
����
Z t

0
e�isD

✓
⌫

|x |u(s)
◆

ds
����

L2
 ⌫

���|x |�1/2u
���

L2
t L2

x

. kfkL2
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Schrödinger equation with inverse square: our
inspiration
In particular, in 2003 Burq-Planchon-Stalker-Tahvlidar Zadeh proved
the following local smoothing estimate

k|x |�1/2�2↵(P1/4�↵
a )ukL2

t L2
x
 CkfkL2(Rn)

for n � 2, ↵ 2 (0, 1
4 + 1

2µd), µd =
p

(�(n) + d)2 + a, d � 0,
Pa = ��+ a

|x |2 , �(n) = n�2
2 and u solves

(
i@tu � Pau = 0,
u(0, x) = f (x) 2 L2

�d(Rn)

where with L2
�d we are denoting the subspace of L2 consisting of all

functions that are orthogonal to all spherical harmonics of degree less
than d .
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The proof of Burq,Planchon,Stalker,Tahvildar-Zadeh
Aim: proving a local smoothing estimate of the form

k|x |�1ukL2(Rn+1)  CkfkL2(Rn)

for equation 8
<

:
i@tu +�u � a

|x |2 u = 0,

u(0, x) = f (x)
(7)

Use spherical harmonics decomposition f =
P

l,m f m
l (r)Y m

l (✓),
rotational symmetry and L2 orthogonality of spherical harmonics
to reduceto a radial problem on every (fixed) l-th space. On the
l-th spherical space the operator ��+ a

|x |2 becomes

Aµ = �@2
r � (n � 1)r�1@r + [l(l + n � 2) + a]r�2;
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Use Hankel transform

(Hµu)(⇠) =
Z +1

0
(r |⇠|) 2�n

2 Jµ(r |⇠|)u(r⇠/|⇠|)r n�1

which has the properties:
1 H2

µ = Id;
2 Hµ is an L2-isometry;
3 HµAµ = ⌦2Hµ, where the operator ⌦af (x) = |x |af (x).
4 Using (3) define fractional powers of Aµ as

A�/2
µ u(r , ✓) = Hµ⌦

�Hµu(r , ✓) =
Z 1

0
k�
µ (r , s)u(s, ✓)s

n�1ds

with a certain integral kernel k (which is explicitly known).
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Now the proof: by applying Hankel transform we can rewrite

k|x |�1ukL2
t L2

x
= kA�1/2

µ HµukL2
t L2

x
. (8)

On the other hand, Hµu solves

i@tHµu � ⌦2Hµu = 0, Hµu(⇠, 0) = Hµf (⇠)

and thus takes the form, after Fourier transforming in time,
FtHµu(⌧, ⇠) = Hµf (⇠)�(⌧ � |⇠|2). The L2 norm in (8) then becomes,

kA�1/2
µ FtHµukL2L2 =

����
Z 1

0
k�1
µ (|⇠|, s)�(⌧ � s2)Hµf (s⇠/|⇠|)sn�1ds

����
L2L2

⇠=
Z 1

0

Z

Sn�1
⌧4�(n)+2k�2

µ (⌧, ⌧)|(Hµf )(⌧✓)|2d✓ = CµkHµfkL2 .

Crucial: The diagonal values of the integral kernel are

k�2
µ (⌧, ⌧) ⇠= Cµ⌧

n�1�(4�(n)+2).
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The massless Dirac-Coulomb equation
We consider the problem

8
<

:
i@tu +Du +

⌫

|x |u = 0, u(t , x) : Rt ⇥ R3
x ! C4

u(0, x) = f (x)
(9)

with ⌫ 2 (�1, 1). We aim for an estimate of the form
���|x |�a|D⌫ |beit(D+ ⌫

|x| )f
���

L2
t L2

x

 CkfkL2 .

with D⌫ = D + ⌫
|x | .

Problems:
We are dealing with a system;
The "spherical harmonic" decomposition is more subtle;
Building an explicit Hankel transform is tricky;
The corresponding integral kernel is difficult to handle (the explicit
form of generalized eigenstates involves special functions)
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The result

Theorem (F.C., E. Seré, JFA ’16)

Let ⌫ 2 (�1, 1), u be solution of (9) and let j 2 1
2 + N. Then for any

1/2 < ↵ <
q
(j + 1/2)2 � ⌫2 + 1/2

and any f 2 L2((0,1))⌦H�j there exists a constant C = C(⌫,↵) such
that the following estimate holds

k|x |�↵|D⌫ |1/2�↵ukL2
t L2

x
 CkfkL2 . (10)
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The setup: partial wave decomposition
Using partial wave subspaces it is possible to decompose every
u 2 L2(R3,C4) as

u(x) =
X

j,mj ,kj

fmj ,kj (r)⌦
+
mj ,kj

(✓,�) + gmj ,kj (r)⌦
�
mj ,kj

(✓,�) (11)

with j = 1
2 ,

3
2 , . . . , mj = �j ,�j + 1, . . . ,+j , kj = ±(j + 1/2),

⌦+
mj ,⌥(j+1/2) =

ip
2j

0

BBBB@

p
j + mj Y mj�1/2

j�1/2p
j � mj Y mj+1/2

j�1/2
0
0

1

CCCCA

⌦�
mj ,⌥(j+1/2) =

1p
2j + 2

0

BBBB@

0
0

p
j + 1 � mj Y mj�1/2

j+1/2

�pj + 1 � mj Y mj+1/2
j+1/2

1

CCCCA
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This decomposition defines a unitary isomorphism between Hilbert
spaces

L2(R3)4 ⇠=
M

j

L2((0,1), dr)⌦Hj,mj ,kj .

Moreover, the Dirac-Coulomb operator is unitary equivalent to the
direct sum of the "partial wave" Dirac operators Dmj ,kj , the action of
which with respect to the basis {⌦+

mj ,kj
,⌦�

mj ,kj
} is given by the radial

matrix

Dkj =

 
⌫
r � d

dr +
kj
r

d
dr +

kj
r

⌫
r

!
(12)

which is known as the radial Dirac operator.

In what follows, we will thus forget the angular dependance and work
on the generical k -th subspace.

Federico Cacciafesta The Dirac equation in dispersive PDEs CFP 2003 12 / 23



The continuous spectrum

The continuous spectrum for the Dirac-Coulomb is well known, and for
✏ > 0 with respect to representation (11) has the radial coordinates

 k ,⌫
✏ (r) =

 
f k ,⌫
+ (r , ✏)

gk ,⌫
+ (r , ✏)

!
=

±2p
⇡

e
1
2⇡⌫

|�(� + 1 + i⌫)|
�(2� + 1)

(✏r)��1ei✏r (13)

⇥
h
ei⇠

1F1(� � i⌫, 2� + 1,�2i✏r)⌥ e�i⇠
1F1(� + 1 � i⌫, 2� + 1,�2i✏r)

i

where � =
p

k2 � ⌫2 and e�2i⇠ = ��i⌫
k .

Remark: Using a charge conjugation argument (or working directly on
the radial equations) it can be shown that

 
f k ,⌫
� (r ,�✏)

gk ,⌫
� (r ,�✏)

!
=

 
g�k ,�⌫
+ (r , ✏)

f�k ,�⌫
+ (r , ✏)

!
.
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Confluent hypergeometric functions

Confluent hypergeometric functions are given by series of the form

1F1(a, b, z) =
1X

l=0

(a)l

(b)l l!
zl

which are defined for a 2 C, b 2 C \� N and converge for every z 2 C
((a)l = a(a + 1) . . . (a + l � 1) are the Pochhammer symbols).
They are solutions to the differential equation

z
d2w
dz2 + (b � z)

dw
dz

� aw = 0.
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The relativistic "Hankel transform"
We introduce the following operator

Pku(✏) =
✓ P+

k u(✏)
P�

k u(✏)

◆
=

 R +1
0  k ,⌫

✏ (r)u(r)r2dr
C
⇣R +1

0  k ,⌫
�✏ (r)u(r)r

2dr
⌘
!

(14)

=

Z +1

0
Hk ,⌫(✏r) · u(r)r2dr

where the matrix Hk ,⌫ =

 
f k ,⌫
+ (✏r) gk ,⌫

+ (✏r)
f k ,⌫
� (✏r) gk ,⌫

� (✏r)

!
.

The operator Pk plays exactly the role of the Hankel transform for the
inverse square Schrödinger equation:

1 Pk is an L2-isometry;
2 PkDku = ⌦Pku.
3 The inverse of Pk is given by P�1

k u(r) =
R +1

0 H⇤
k ,⌫(✏r) · u(✏)✏2d✏.

where H⇤
k ,⌫ =

 
f k ,⌫
+ (✏r) f k ,⌫

� (✏r)
gk ,⌫
+ (✏r) gk ,⌫

� (✏r).

!
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The crucial interaction operator Ak

Inspired by property (2) we define the following family of operators Ak
as

A↵
k u(r) = Hk⌦

↵H�1
k uk (r)

=

Z +1

0

✓Z +1

0
Hk ,⌫(✏r) · H⇤

k ,⌫(✏s)✏
2+↵d✏

◆
uk (s)s2ds.

We denote with Sk (r , s)↵ =
R +1

0 Hk ,⌫(✏r) · H⇤
k ,⌫(✏s)✏

2+↵ the integral
kernel of the operator A↵

k .
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The proof
We now follow the argument of Burq-Planchon-Stalker-Tahvildar
Zadeh:

Use partial wave subspaces to decompose the problem on the
single spaces;
Use modified Hankel and time Fourier transform to diagonalize the
problem;
Rely on the interaction operator A↵

k to write

k|x |�↵|D⌫ |1/2�↵ukL2(R3+1)
Z +1

0

Z +1

0
((Hk f )⇤(⌧)S�↵

k (⇢, ⌧)T )·(S�↵
k (⇢, ⌧)(Hk f )(⌧))⌧5�2↵⇢2d⇢d⌧.


Z +1

0
Tr(S�2↵

k (⌧, ⌧))|Hk f (⌧)|2⌧5�2↵ d⌧.

Crucial step: proving a good estimate on Tr(S�2↵
k (⌧, ⌧)).

Apply triangular inequality on partial wave decomposition to
conclude the proof
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The integral
The crucial step consists thus in the study of the kernel S�2↵

k (r , s)
which in turns leads to the analysis of integrals of the form

I(r , s) =

C
Z +1

0
✏2��2↵ei(r+s)

1F1(�� i⌫, 2�+1,�2i✏r)1F1(�� i⌫, 2�+1,�2✏s)d✏

(15)
in the limit r ! s where the constant

C = C�,⌫,r ,s =
2
±⇡

e⇡⌫ |�(� + 1 + i⌫|2
�(2� + 1)2 (rs)��1. (16)

Proposition
C�,⌫,r ,sR(I(⌧, ⌧)) = c�,⌫⌧2↵�3, with the constant c bounded in �.
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The Dirac equation in an Aharonov-Bohm field

We consider the 2D system
(

iut +DAu = 0, u(t , x) : Rt ⇥ R2
x ! C2

u(0, x) = f (x).
(17)

where DA = �i
2X

k=1

�k (@k � iAk ), with A(x) = ↵
⇣
� x2

|x |2 ,
x1
|x |2

⌘
.

We adapt the strategy presented above to obtain the following
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The result

Theorem (F. C., L. Fanelli)

Let ↵ 2 (0, 1), u be a solution of (17) and let j 2 Z. Then for any

1/2 < � < 1 + |l + ↵|. (18)

and any f 2 L2((0,1)rdr)⌦H�l there exists a constant c = c(↵, �, l)
such that the following estimate holds

���|x |��D1/2��
A u

���
L2

t L2
x

 ckfkL2 . (19)

In addition, in the endpoint case � = 1/2 the following estimate holds

sup
R>0

R�1/2keitDAfkL2
t L2

|x|R
. kfkL2 , (20)
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The strategy

Partial wave decomposition (the 2D case is slightly easier): we
can write indeed

�(x) =
X

l2Z

1
2
p
⇡

✓
fl(r)eil�

igl(r)ei(l+1)�

◆
(21)

Define the "Hankel transform" as a proper projection onto the
spectrum, which is explicit in this case too: we can write indeed
generalized eigenstates with respect to decomposition (21) for a
fixed value of l 2 Z and energy E > 0 as

�l,E(r) =
✓

fl,E(r)
gl,E(r)

◆
=

r
⇡

2

✓
J|l+↵|(Er)

J|l+1+↵|(Er)

◆
. (22)

Interaction integrals (notice that this time we really have Bessel
functions: we can use standard Hankel transform).
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Comments and problems
The two results can be combined together, giving local smoothing for the
Dirac-Coulomb-AB model.
This very same technique can be used to prove local smoothing for
fractional Schrödinger operators in Aharonov-Bohm magnetic field (joint
work with L. Fanelli).
Estimate (20) requires, after using partial wave decomposition, to prove
a bound as

1
R

Z R

0
�l(r)2rdr < C (23)

uniform in R and l with �l(r) being the (radial components of the)
generalized eigenstate of the perturbed Dirac operator. In the case of
�l(r) Bessel functions (free case or AB field), this has been proved by
Strichartz. Question:What for confluent hypergeometric
(Dirac-Coulomb)?
One is tempted to prove

sup
r ,�

|pr��(r)|  C

-FALSE- even for Bessel. More refined estimates are needed to prove
(23)..
What about the mass?
What about Strichartz?
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Thanks for your attention
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