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Dispersive estimates for the massless Dirac equation
The solution to the Cauchy problem

{i@tu+Du:0, u(t, x) : Ry x RS — C* )
u(0, x) = f(x)
3
where D = i~ Z «a;0; is the 3D Dirac operator satisfies different sets
j=1

of dispersive estimates.
@ Strichartz estimates:

itD <
le fIILfHX;,,%,%NHfIILz, (2)
2 2
—+—-—=1, 2<p<oo, 2<Qg< 0.
P q P

Applications: crucial tool in the study of nonlinear problems:
local/global well posedness, scattering...

Question: do Strichartz estimates hold in presence of perturbations?



Local smoothing estimates

We consider the dynamics perturbed with an electric potential
iofu+Du+ Vu=0, 3)
u(0, x) = f(x).

We consider in particular potentials in the form V(x) = |X|a with a > 0.

The general picture. The homogeneity of the operator works as a
threshold for the validity of Strichartz estimates. In other words, if we
consider the behaviour at |x| >> 1, if a > 1 then Strichartz estimates
hold; if a < 1 then one expects to find counterexamples.

The case a = 1 (Coulomb potential) then represents the threshold: it is
the scaling critical case. Philosophically, it can be compared to the
Schrédinger equation with inverse square potential.

Intermediate estimates: local smoothing estimates take the form
lw(x) " &P 212 < ]2 (4)

for some weight function w(x).



From local smoothing to Strichartz (a relevant

example)
Suppose we can prove for the Dirac equation with a Coulomb potential
the following estimate for u = P+ m)¢

|71/2U”L$L)2( < [Ifllz2, (5)

then denoting by Sp 4 any admissible Strichartz space we have

e/tD/ e—/sD <U(S)> ds
0 x| So.q

The perturbation term can be estimated again using free Strichartz
and the dual of local smoothing estimate, i.e.

‘ / e *PT)F(s)ds
[2

in the case v = 0, thus yielding
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lulls,, < 11€™flls,, +

(6)

1/2
< [l|x|"/ Fll212

<yH\x| 12y
2

s < M



Schrédinger equation with inverse square: our
inspiration

In particular, in 2003 Burg-Planchon-Stalker-Tahvlidar Zadeh proved
the following local smoothing estimate

—1/2—2a/pl/4—a
l1x171/272(PY ") ull g2 < ClIfll ey

forn>2,a€(0,%+ 3uqg) na=/(\n)+d)2+a d>0,
Pa=—A+ 5, Mn) = n-2 and u solves

i0tu — Pau = 0,
u(0,x) = f(x) € L2 ygn

where with L2>d we are denoting the subspace of L2 consisting of all

functions that are orthogonal to all spherical harmonics of degree less
than d.
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The proof of Burg,Planchon,Stalker, Tahvildar-Zadeh
Aim: proving a local smoothing estimate of the form
H|X|_1u||L2(]R"+1) < Cllf{| 2(mny

for equation
a
. Ay 2o
iotu + Au |x]2u 0,
u(0, x) = f(x)
@ Use spherical harmonics decomposition f = -, . 7(r) Y{"(0),
rotational symmetry and L2 orthogonality of spherical harmonics

to reduceto a radial problem on every (fixed) /-th space. On the
I-th spherical space the operator —A + ﬁ becomes

Ai=—0F—(n—=Nr 0, +[I(l+n—2)+alr?
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@ Use Hankel transform

“+o00
(%U)(é)—/o (rle)) =" Ju(rlelu(re/ ) r!
which has the properties:
Q Hi=1q;
© 7, is an L2-isometry;
Q H,A, = Q?H,, where the operator Q3f(x) = |x|2f(x).
© Using (3) define fractional powers of A, as

AS20(r,0) = H,Q H,uu(r, 0) = /0 K (r, s)u(s.0)s" ' ds

with a certain integral kernel k (which is explicitly known).
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Now the proof: by applying Hankel transform we can rewrite
I iz = 1AL 2 H 22 (®)
On the other hand, #,u solves
iOHu— PH,u=0,  H,u(&0) =Huf(E)

and thus takes the form, after Fourier transforming in time,
FiHuu(T, €) = H,f(€)5(T — |€?). The L2 norm in (8) then becomes,

I A (O S L s

- /o /S P22 1) (34, ) (70) PO = Co[H ]2
Crucial: The diagonal values of the integral kernel are

kN_Z(T, 7_) ~ CuTn_1_(4)\(n)+2).
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The massless Dirac-Coulomb equation
We consider the problem

x|

i+ DU+ —u=0, u(t,x):Rx RS C*
u(0, x) = f(x)

with v € (—1,1). We aim for an estimate of the form

R

< C||f|| 2
1212 L

t

with D, =D + ﬁ

Problems:
@ We are dealing with a system:;
@ The "spherical harmonic" decomposition is more subtle;
@ Building an explicit Hankel transform is tricky;

@ The corresponding integral kernel is difficult to handle (the explicit
form of generalized eigenstates involves special functions)

Federico Cacciafesta The Dirac equation in dispersive PDEs CFP 2003 9/23



The result

Theorem (F.C., E. Seré, JFA’16)

Letv € (—1,1), u be solution of (9) and letj € } + N. Then for any

1/2 <a<\/(i+1/2)2 -2 +1/2

and any f € L2((0,0)) ® H; there exists a constant C = C(v, o) such
that the following estimate holds

11X 721D 2=l 212 < Cfllze- (10)
V.



The setup: partial wave decomposition
Using partial wave subspaces it is possible to decompose every
uc 2R3 C* as

u(x)= > fn 10,0 + Gm k(N 1 (6,0) (1)

Jm K

withj= 3.3, my=—j,—j+ 1.+ k== +1/2)

; mi—1/2
VA
+ _ ! — Yijr
Q'77/'HE(/'+1/2) - ﬁ / -1/2
O

Q- 1 1/2

- - m]
mF(j+1/2) — /2] + 2 Vit1—m; Y/-H/Z
1= Ym/+1 /2
—Vi+1=mi Y
T ee— SR T



This decomposition defines a unitary isomorphism between Hilbert
spaces
L2(R%)* = ) L2((0, ), ) & Hym i
J
Moreover, the Dirac-Coulomb operator is unitary equivalent to the
direct sum of the "partial wave" Dirac operators Dm,,k,, the action of

which with respect to the basis {Qm k> U, i} 18 given by the radial

matrix
v _dﬂ + ﬁ
_ r r r
ar r r

which is known as the radial Dirac operator.

In what follows, we will thus forget the angular dependance and work
on the generical k-th subspace.
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The continuous spectrum

The continuous spectrum for the Dirac-Coulomb is well known, and for
e > 0 with respect to representation (11) has the radial coordinates

\Uk I/(r) ( ka( ) ) _ +2 e%ﬂuw(er)vi‘leid

dra ) T VRS f@y i) (13)

X [6’51 Fi(y — iv,2v + 1, —2ier) F e 1 Fy (v + 1 — iv, 2y + 1, —2ier)

where v = Vk2 — 12 and e~2¢ = Lk/y

Remark: Using a charge conjugation argument (or working directly on
the radial equations) it can be shown that

¥ (r,—e) ) _ ( g: 7 (r ) ) |
ger(r,—e) f7(re)
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Confluent hypergeometric functions

Confluent hypergeometric functions are given by series of the form

o0

1F1abz Z a)/

/|
/o b),

which are defined for a € C, b € C \ — N and converge for every z € C
((a)y=ala+1)...(a+1—1) are the Pochhammer symbols).
They are solutions to the differential equation

d’w

z P
dz?

+(b—z)ZVZV—aw:O.

Federico Cacciafesta The Dirac equation in dispersive PDEs CFP 2003 14/23



The relativistic "Hankel transform"
We introduce the following operator

o Prue) ) FEWE (ryu(r)ridr
Pru(e) = < P:’u(e) ) N ( C <OO+°° \Ulif(r)u(r)rzdr> (14)
+o0

= Hi,(er) - u(r)rédr
0

K,v K,
where the matrix Hy , = ( fﬁvy(ﬁr) gjg,j(er) )
’ ¥ (er) 2" (er)

The operator Py plays exactly the role of the Hankel transform for the
inverse square Schrédinger equation:

@ Py is an L2-isometry;

Q P Dyu= QPu.

Q The inverse of Py is given by P, u(r) = [ H;, (er) - u(e)e?de.

K,v K,v
where Hy , = ( e (en) 7 (er) )

g (er) g (en).
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The crucial interaction operator Ax

Inspired by property (2) we define the following family of operators Ak
as
ju(r) = HkQ H, ui(r)
+00 +o00o
= / ( H, (er) - H;J,(es)eerade) uk(s)s%ds.
0 0

We denote with Sk(r, s)* = fo Hi . (er) HZ’V(ES)GZ"'O‘ the integral
kernel of the operator A%.
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The proof
We now follow the argument of Burg-Planchon-Stalker-Tahvildar
Zadeh:
@ Use partial wave subspaces to decompose the problem on the
single spaces;
@ Use modified Hankel and time Fourier transform to diagonalize the
problem;
@ Rely on the interaction operator Ay to write

X172 D] 20 o,
too +oo T 5-2a 2
/0 /0 (i) (1) (9 ) )(S (0, 1) (HiF) (1)) 752 Pl pcir.

—+00
< / Tr(S 2%(7, 7)) [ Hif(7) 2722 dr.
0
@ Crucial step: proving a good estimate on TI‘(S;ZQ(T, 7)).
@ Apply triangular inequality on partial wave decomposition to
conclude the proof
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The integral

The crucial step consists thus in the study of the kernel S;zo‘(r, S)
which in turns leads to the analysis of integrals of the form

I(r,s) =

+o0 .
C / 21720l r+8) Fy (v — v, 2y +1, —2ier)  Fy (v — iv, 2y +1, —2¢8)de
0

(15)
in the limit r — s where the constant
2 IF(y+1+ i1/|2 1
= v = — (L S . 1
C=Cyurs :|:7Te F(2y+1)2 (rs) (16)
Proposition
CyursR(I(1,7)) = ¢y, 723, with the constant ¢ bounded in . J
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The Dirac equation in an Aharonov-Bohm field

We consider the 2D system

{iut—l—DAu:O, u(t, x) : Ry x R2 — C? (17)

u(0, x) = f(x).

2
where Dy = —i' > ai(9 — iAX), with A(x) = a ( L )

o X I
k=1

We adapt the strategy presented above to obtain the following
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The result

Theorem (F. C., L. Fanelli)

Leta € (0,1), u be a solution of (17) and letj € Z. Then for any

1/2<y<1+|l+a (18)

and any f € L?((0, co)rdr) ® M there exists a constant ¢ = c(a,, )
such that the following estimate holds

Jixioy? 7w

1212 =

In addition, in the endpoint case v = 1/2 the following estimate holds

< c|[fl 2. (19)

sup R_1/2|\9'm"f”L$L2 S il (20)
R>0 [x|<R
4
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The strategy

@ Partial wave decomposition (the 2D case is slightly easier): we
can write indeed

N (0 fine” >
®(x) = %z: N < igy(r)e/(+1e (21)

@ Define the "Hankel transform" as a proper projection onto the
spectrum, which is explicit in this case too: we can write indeed
generalized eigenstates with respect to decomposition (21) for a
fixed value of / € Z and energy E > 0 as

fi.e(r) ) \/?< Jii+ol(EF) )
r = ’ =4/= . 22
x1.£(7) ( 91.£(r) 2\ Jr14a/(EN) (@2)
@ Interaction integrals (notice that this time we really have Bessel
functions: we can use standard Hankel transform).
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Comments and problems

@ The two results can be combined together, giving local smoothing for the
Dirac-Coulomb-AB model.

@ This very same technique can be used to prove local smoothing for
fractional Schrédinger operators in Aharonov-Bohm magnetic field (joint
work with L. Fanelli).

@ Estimate (20) requires, after using partial wave decomposition, to prove
a bound as

R
lR/ xi(r?rdr < C (23)
0

uniform in R and / with y,(r) being the (radial components of the)
generalized eigenstate of the perturbed Dirac operator. In the case of
xi(r) Bessel functions (free case or AB field), this has been proved by
Strichartz. What for confluent hypergeometric
(Dirac-Coulomb)?

One is tempted to prove

sup [Vrxa(r)] < C
rA

-FALSE- even for Bessel. More refined estimates are needed to prove
(23)..

@ What about the mass?

@ What about Strichartz?
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Thanks for your attention
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