
Universität Bielefeld SFB 701

Large time asymptotics for the
Dirac equation

Timothy Candy
University of Bielefeld

Linear and Nonlinear Dirac Equation: Advances and Open Problems

February 2017



Universität Bielefeld

References

1 C., Global existence for an L2
critical nonlinear Dirac equation in one

dimension. Adv. Diff. Equ. 16 (2011), no.7–8, 643-666

2 N. Bournaveas and C.. Global Well-Posedness for the Massless Cubic Dirac

Equation. International Mathematics Research Notices 2016 (2015), no. 22,
6735–6828

3 C. and S. Herr. Transference of Bilinear Restriction Estimates to Quadratic

Variation Norms and the Dirac-Klein-Gordon System. (2016), preprint:

4 C. and H. Lindblad. Long range scattering for the cubic Dirac equation on

R1+1. (2016), preprint:

Timothy Candy – Large time asymptotics for the Dirac equation 2 / 29



Universität Bielefeld

Linear Dirac equation

�i�µ@µ +M = 0

 (0) = f

)

on (t, x) 2 R⇥ Rn.

• the spinor  (t, x) : R1+n ! CN and mass M > 0.
• Repeated Greek indices are summed over µ = 0, ..., n, and @0 = @t,
@j = @x

j

(j > 1), so

�µ@µ = �0@t +
3

X

j=1

�j@j .

• �µ are (constant) N ⇥N complex matrices such that

�µ�⌫ + �⌫�µ = 2gµ⌫IN⇥N , (�0)† = �0, (�j)† = ��j

and gµ⌫ = diag(1,�1,�1,�1). In particular,

(�i�µ@µ +M)†(�i�µ@µ +M) = @2t ��+M2 = ⇤+M2.
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Linear Dirac equation

�i�µ@µ +M = 0

 (0) = f

)

on (t, x) 2 R⇥ Rn.

• If n = 3, one choice is

�0 =

✓

I2⇥2 0
0 �I2⇥2

◆

, �j =

✓

0 �j

��j 0

◆

where the Pauli matrices �j are defined as

�1 =

✓

0 1
1 0

◆

, �2 =

✓

0 �i
i 0

◆

, �3 =

✓

1 0
0 �1

◆

• If n = 1, 2, we take

�0 = �3, �1 = i�2, �2 = �i�1.
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Basic Estimates

�i�µ@µ +M = 0

 (0) = f

)

on (t, x) 2 R⇥ Rn.

• Energy Estimate

k kL1
t

Hs

x

(R⇥Rn) . kfkHs(Rn) + k(�i�µ@µ +M) kL1
t

Hs

x

(R1+n)

• Dispersive Bound

k (t)kL1
x

(Rn) . t�
n�1
2

X

||6n+1

krfkL1
x

(Rn)
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Basic Estimates

�i�µ@µ +M = 0

 (0) = f

)

on (t, x) 2 R⇥ Rn.

• L1 Strichartz
Let 1

q < min{n�1
4 , 1

2}. Then

k kLq

t

L1
x

(R⇥Rn) . kfk
H

n

2
� 1

q (Rn)
+ k(�i�µ@µ +M) k

L1
t

H
n

2
� 1

q

x

(R1+n)

(see [STRICHARTZ’97],[GINIBRE-VELO’89],[ESCOBEDO-VEGA ’97]...). Key points:
1 Decay in time,
2 Saves 1

q
derivatives over Sobolev embedding

k (t)kL1
x

(Rn) . k (t)k
H

n

2
+✏

(Rn)

. kfk
H

n

2
+✏

(Rn)
+ k(�i�µ@µ +M) k

L1
t

H
n

2
+✏

x

(R1+n)
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Cubic Dirac Equation

�i�µ@µ +M =
�

  
�

 

 (0) = f

)

on (t, x) 2 R⇥ Rn.

here  =  †�0 is the Dirac adjoint. Also known as Soler Model.

Basic Questions:

1 (LWP) Given data f 2 Hs can we find a time T > 0 and a unique solution
 2 C([0, T ], Hs) which depends continuously on the data?

2 (GWP and asymptotic behaviour) Can we extend local solution to a global
solution  2 C(R, Hs)? What happens as t ! 1?

3 (special solutions) Existence/characterisation of soliton solutions? Stability
of soliton solutions?
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Conserved Quantities

�i�µ@µ +M =
�

  
�

 

 (0) = f

)

on (t, x) 2 R⇥ Rn.

• The Charge
Q[ ] = k kL2

x

and the Energy

E[ ] =

Z

Rn

i

2

�

 �0@t � @t �
0 

�

+
1

2

�

  
�2
dx

are conserved under the flow (thus Q[ ] = Q[f ] and E[ ] = E[f ]).
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Scaling

�i�µ@µ +M =
�

  
�

 

 (0) = f

)

on (t, x) 2 R⇥ Rn.

• If M = 0 and  (t, x) is a solution, then  �(t, x) = �
1
2 (�t,�x) also a

solution.
• Rescaling leaves Ḣ

n�1
2 norm invariant

) Cubic Dirac equation is critical in H
n�1
2 .

• In particular, we have the following expectation from data f 2 Hs:

s > n� 1

2
problem locally well-posed

s <
n� 1

2
problem ill-posed
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Current state of the art n = 2, 3: small data gwp and scattering

Theorem (Bejenaru-Herr’15, ’16, Bournaveas-C.’15)
Let n = 2, 3 and M > 0. There exists ✏ > 0 such that if kfk

H
n�1
2

< ✏ then there

exists a global solution  2 C(R, H n�1
2 ) which is unique in a certain subspace,

and depends continuously on the data. Moreover  scatters to a linear solution

as t ! ±1, thus there exists  ±1 with (�i�µ@µ +M) ±1 = 0 such that

lim
t!±1

k (t)�  ±1(t)k
H

n�1
2

= 0.

• Result also holds in the case of the Thirring Model

�i�µ@µ +M = ( �µ )�µ .

When n = 3 can also add combinations of

( �5 ) , (  )�5 , ( �5 )�5 

where �5 = �0�1�2�3 (essentially any Lorentz covariant nonlinearity).
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Current state of the art n = 1: large data gwp and small data
modified scattering

Theorem (C.’12, C.-Lindblad’16)
Let n = 1 and M > 0. Then cubic Dirac equation is GWP from large data in

L2(R). Moreover, if M > 0 and

khxi4fkH5 ⌧ 1

then we have the pointwise asymptotics as ⇢ =
p
t2 � x2 ! 1

 1 +  2 =
1p
t� x

⇣

ei⇢A+(⇢,
x
t ) + e�i⇢A�(⇢,

x
t )
⌘

+O
⇣ 1
p

(t� x)⇢

⌘

 1 �  2 =
1p
t+ x

⇣

ei⇢A+(⇢,
x
t )� e�i⇢A�(⇢,

x
t )
⌘

+O
⇣ 1
p

(t+ x)⇢

⌘

with A±(⇢, y) = e2i|f±(y)| ln ⇢f±(y) and  T = ( 1, 2).

• For linear Dirac A± = f±(y) (i.e. no log correction)
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Previous Results for Cubic Dirac:

• Local well-posedness for s > 1 (subcritical range) due to [ESCOBEDO-VEGA ’97].
• Global well-posedness and scattering when s > 1 and M > 0, or s = 1 and

some additional angular regularity due to [MACHIHARA-NAKANISHI-OZAWA ’03,

MACHIHARA-NAKAMURA-OZAWA’04, MACHIHARA-NAKAMURA-NAKANISHI-OZAWA’05].
• If n = 2, local well-posedness in subcritical regime [PECHER ’14].
• If n = 1, gwp for regular data [DELGADO’78], subcritical large data global existence
s > 0 [SELBERG-TESFAHUN’10],

• Existence of solitary wave solutions [STRAUSS-VÁSZQUEZ ’86,CAZENAVE-VÁSZQUEZ ’86,MERLE ’88,

ESTEBAN-SÉRÉ’93, ...]

 (t, x) = e�i!t !(x).

• Stability of solitary waves [BOUSAID-CUCCAGNA’12, CONTRERAS-PELINOVSKY-SHIMABUKURO’16,

BOUSSAID-COMECH’16...]
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Sketch of proof: n = 2, 3

Can reduce proof of theorem to constructing Banach space X (for the solution)
and N (for nonlinear term) such that

(1) X controls the data space L1
t Hs,

k kL1
t

Hs(R1+n) . k kX .

(2) ‘Generalised Energy inequality’

k kX . k (0)kHs(Rn) + k(�i�µ@µ +M) kN .

(3) Nonlinear Estimate
k(  ) kN . k k3X

(1) + (2) + (3) =) well-posedness in Hs.
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First Attempt: n = 3

Take X = L1
t Hs

x \ Lq
tL

1
x ([0, T ]⇥ R3) (with q > 2) and

N = L1
tH

s
x([0, T ]⇥ R3).

• Energy estimate is true (Strichartz type estimates), but nonlinear estimate
loses a power of T since

k   kL1
T

Hs

x

⇡ k 2rs kL1
T

L2
x

. k k2L2
T

L1
x

k kL1
T

Hs

x

and we only have

k kL2
t

L1
x

([0,T ]⇥R3) . T
1
2�

1
q k kX

• However does give lwp for s > 1 [ESCOBEDO-VEGA ’97], and can be pushed to give
gwp when s > 1,m > 1 or have additional angular regularity
[MACHIHARA-NAKAMURA-NAKANISHI-OZAWA’05]

• Endpoint case requires L2
tL

1
x (R1+n) bound. Unfortunately this estimate

fails [KLAINERMAN-MACHEDON ’93], also fails in L2
t (R, BMOx(R3)) [MONTGOMERY-SMITH ’98].

• To improve need two further ingredients:
1 Null Structure and bilinear estimates (without structure, blow-up can occur

[LINDBLAD’96, D’ANCONA-OKAMOTO’16] ).
2 Replacement for missing L2

tL
1
x estimate.
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Null Structure: n = 1

Let �i�µ@µ = 0 and consider the bilinear term   .

• Solution is of form  (t, x) =

✓

f(x� t) + g(x+ t)
f(x� t)� g(x+ t)

◆

and

  = 2=[f†(x� t)g(x+ t)].

• Thus   is product of waves traveling in different directions!
• Easy consequence:

�

�  
�

�

L2
t,x

.
�

� (0)
�

�

2

L2
x

• Note that
�

�| |2��
L2

t,x

=
�

�|f(x� t)|2 + |g(x+ t)|2��
L2

t,x

= 1.

So bilinear L2
t,x estimate fails for generic product.
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Null Structure: n > 1

Let �i�µ@µ = 0 and consider the bilinear term   .
• Introduce potential

�i�µ@µ' =  .

Then ⇤' = 0 and
  = Q(',')

where Q is sum of classical null forms

Qµ⌫(u, v) = @µu@⌫v � @⌫u@µv, Q0(u, v) = @µu@⌫v

• These bilinear forms have improved regularity/decay properties and have
been well-studied [KLAINERMAN-MACHEDON’93], [KLAINERMAN-FOSCHI’00], [LEE-VARGAS’08]

• One consequence:
�

�  
�

�

L2
t,x

.
�

� (0)
�

�

L2
x

k (0)k
H

n�1
2

• Again estimate fails for generic products like | |2.
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Missing L2
t

L1
x

Strichartz estimate: The Knapp example

Let f 2 L2
x with

supp bf ⇢ {|⇠| ⇡ �, ✓(⇠,!) 6 ↵}, ! 2 Sn�1

• Corresponding solution to wave equation is

�

e�it
p
��f

�

(x) =

Z

Rn

e�it|⇠|
bf(⇠)eix·⇠d⇠ =

Z

Rn

e�it
�

|⇠|�⇠·!
�

bf(⇠)ei(x�t!)·⇠d⇠.

• If |t| ⌧ �↵�2 then

t
�|⇠|� ⇠ · !) ⌧ 1 =) e�it(|⇠|�!·⇠) ⇡ 1

and therefore solution is essentially traveling wave

e�it
p
��f(x) ⇡ f(x� t!)

• For Knapp example, dispersion does not kick in until times |t| & �↵�2. In
particular, for ↵ small, times can be very large...
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Knap Example and Null Frames

Let f 2 L2
x with

supp bf ⇢ {|⇠| ⇡ �, ✓(⇠,!) 6 ↵}.

• For times |t| ⌧ T = �↵�2, we have seen that

e�it
p
��f(x) ⇡ f(x� t!).

• In particular, this implies that

k�( t
T )e

�it
p
��fkL2

t

L1
x

⇡ T
1
2 kfkL1

x

. (↵�)
n�1
2
�

↵
kfkL2

x

.

• On the other hand, if we introduce the null frame

t! = t+ x · !, x! = x� 1

2
(t+ x · !)!

then computation gives

k�( t
T )e

�it
p
��fkL2

t

!

L1
x

!

. (↵�)
n�1
2 kfkL2

x

which is much smaller!!
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Knap Example and Null Frames

Let f 2 L2
x with

supp bf ⇢ {|⇠| ⇡ �, ✓(⇠,!) 6 ↵}.

t! = t+ x · !, x! = x� 1

2
(t+ x · !)!

• Moral: L2
tL

1
x bad, but if we adapt frame to f , the we do have acceptable

L2
t
!

L1
x
!

bounds.
• This idea was introduced by Tataru in work on wave maps [TATARU’01], and played

a crucial role in resolving the small data global well-posedness theory.
• Compare to n = 1 case: solution to wave equation given by traveling waves

f(x� t) + g(x+ t)

Clearly if kf(x� t)kL2
t

L1
x

= 1 but kf(x� t)kL2
x�t

L1
x+t

= kfkL2
x

.

• Exploits focusing property of the wave, rather than dispersion.
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Replacement for L2
t

L1
x

: The plane wave space PW ()

• Let  ⇢ Sn�1 be a cap on the sphere (so a set of directions). Then �(t, x) is
a PW () atom if there exists ! 2 2 such that

k�kL2
t

!

L1
x

!

6 1.

• We then define PW () to be the corresponding atomic Banach space

PW () =
n

X

j

cj�j
�

�

�

(cj) 2 `1(N), �j is a PW () atom
o

.

• Basic Properties:
• PW () is a Banach space
• Given any ! 2 , have bound

kukPW () 6 kukL2
t

!

L1
x

!

=) have freedom to adapt frame to the function u
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Summary: n = 2, 3

• PW () spaces form a suitable replacement for missing L2
tL

1
x estimate.

• Price you have to pay is you need energy estimates in null frames, usually
gives a loss, but for cubic Dirac null structure gives additional cancellation.

• Need bilinear estimates in L2
t,x, exploits null structure to get sharp bounds.

• Small data global well-posedness follows by iterating in spaces base on
PW (), Strichartz type norms, Xs,b norms, and L1

t
!

L2
x
!

type norms.
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Proof: n = 1

• Again, key ingredients are bilinear null form estimates, and null frames
(which now take the simple form of null coordinates t± x).

• Conservation of charge, together with a nonconcentration argument (charge
cannot concentrate at a point), implies large data result.

• Proof of scattering requires weighted energy estimates across hyperboloids
⌧ = t2 � x2. Idea is to remove expected linear behaviour, control error
estimates using energy estimates, and reduce to an ODE of the form

@⌧U =
i

⌧
|U |2U

which gives the log correction (strategy has been used in earlier work on
Klein-Gordon equations [DELORT’01], Schrodinger equation [LINDBLAD-SOFFER’05]).
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Dirac-Klein-Gordon system: previous results in n = 3.

�i�µ@µ +M = � 

⇤�+m2� =   

the scalar � : R1+n ! R and spinor  : R1+n ! CN . Masses satisfy M,m > 0.

• Scaling is
�

 (0),�(0), @t�(0)
� 2 L2 ⇥H

1
2 ⇥H� 1

2 .

• Local well-posedness is known in H✏ ⇥H
1
2+✏ ⇥H� 1

2+✏
[D’ANCONA-FOSCHI-SELBERG’07].

Builds on earlier work of [KLAINERMAN-MACHEDON’94] [BEALS-BEZARD’96] [BOURNAVEAS’99] [FANG-GRILLAKIS’05].

• Global well-posedness for large "symmetric" data holds [CHADAM-GLASSEY’74],
[BACHELOT’89], [DIAS-FIGUEIRA’91].
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Dirac-Klein-Gordon system: previous results in n = 3.

�i�µ@µ +M = � 

⇤�+m2� =   

• If 2M > m or M = m = 0, have global well-posedness and scattering for
small data in h⌦i�1Ḃ0

2,1 ⇥ h⌦i�1Ḃ
1
2
2,1 ⇥ h⌦i�1Ḃ

� 1
2

2,1 [WANG’13] with

h⌦i = 1 + (��S2)
1
2 .

• If 2M > m, have global well-posedness and scattering for small data in
H✏ ⇥H

1
2+✏ ⇥H� 1

2+✏
[BEJENARU-HERR’14].
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Scattering in resonant region

�i�µ@µ +M = � 

⇤�+m2� =   

Theorem (C.-Herr’16)
Let 2M > m > 0 and � > 0, or 0 < 2M 6 m and � > 30

7 . Then DKG is globally

well-posed and scatters for small data in h⌦i��L2
x ⇥ h⌦i��H

1
2
x ⇥ h⌦i��H

� 1
2

x .

• Endpoint result would be � = 0 (i.e no angular derivatives)

• Main additional difficulty is presence of resonant interactions in nonlinearity
(i.e. (  ) behaves like linear solution).
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Resonant Regions

�i�µ@µ +M = � 

⇤�+m2� =   

A computation gives

2M > m =) no resonances
2M = m =) resonances but cancelled by null structure
2M < m =) resonances not cancelled by null structure.

However: If 2M < m we have transversality on resonant set

=) can exploit this via bilinear restriction estimates.
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Transference in V 2

Theorem (C.-Herr’16)
Let p > n+3

n+1 . Let ⇤j ⇢ {� 1
4 < |⇠| < 4} and �j : ⇤j ! R be smooth phases

such that for every ⇠ 2 ⇤1, ⌘ 2 ⇤2 we have the transversality condition

|r�1(⇠)�r�2(⌘)| & 1

and a "curvature" condition holds. If supp bu ⇢ ⇤1 and supp bv ⇢ ⇤2 we have

kuvkLp

t,x

(R1+n) . kukV 2
�1
kvkV 2

�2
.

Here kukV 2
�
= kukL1

t

L2
x

+ |u|V 2
�

with

|u|V 2
�
= sup

t
j

2Z

⇣

X

j

ke�it�(�ir)u(tj)� e�it�(�ir)u(tj�1)k2L2
x

⌘

1
2

and Z = {... < tj < tj+1 < tj+2 < ...} is collection of all increasing sequences.
The spaces V p and Up first introduced by Tataru in unpublished work on wave
maps, studied systematically in [KOCH-TATARU’05] [KOCH-TATARU’07].
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Transference in V 2

Theorem (C.-Herr’16)
Let p > n+3

n+1 . Let ⇤j ⇢ {� 1
4 < |⇠| < 4} and �j : ⇤j ! R be smooth phases

such that for every ⇠ 2 ⇤1, ⌘ 2 ⇤2 we have the transversality condition

|r�1(⇠)�r�2(⌘)| & 1

and a "curvature" condition holds. If supp bu ⇢ ⇤1 and supp bv ⇢ ⇤2 we have

kuvkLp

t,x

(R1+n) . kukV 2
�1
kvkV 2

�2
.

• Homogeneous case u = eit�1(�ir)f, v = eit�2(�ir) due to [TAO-VARGAS-VEGA’98,

WOLFF’01, TAO’03, LEE-VARGAS’10, BEJENARU’16...]

• Key point is that range of p improves significantly in presence of
transversality.

• Interpolating with Strichartz estimates gives result for p < 2 close to 2
[STERBENZ-TATARU’10]. Full range of p requires adapting induction on scales
arguments of Tao and Wolff to V 2

� .
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Open Problems

1 Endpoint DKG: Cubic Dirac the small data theory is well-understood. Some
gaps remain for the DKG equation:

Do we have GWP for DKG in L2 ⇥H
1
2 ⇥H� 1

2 ?

2 “Medium” Data Cubic Dirac: If n = 3, then the Dirac equation is energy
supercritical, thus no obvious reason why generic large data solutions
should stay bounded.

Can we construct blow-up solutions for cubic Dirac?

A related question relates to a ground state, can we find a minimum (in
some version of “energy” or norm) soliton?

3 Scattering for Cubic Dirac in n = 1: The modified scattering result is far from
optimal. Natural question is if we can extend result to L2. First step:

Is there a way to characterise/understand the scattering state in L2?
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