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Linear Dirac equation

—iy O + My =0
P(0)=f
e the spinor ¢(t,z) : R**™ — CY and mass M > 0.

¢ Repeated Greek indices are summed over i, = 0, ...,n, and dy = O,
05 = 0., (j 21),80

} on (t,x) € R x R"™.

3
V8 =20, + Z'Yjaj'
j=1
e vy are (constant) N x N complex matrices such that
YA+t =20 Inn, ()T =7 ()T =—4
and g = diag(1, —1,—1,—1). In particular,
(=i, + M) (—in#d, + M) = 9} — A+ M? =0+ M>.
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Linear Dirac equation

—0"Out + My =0 on (t,x) € R x R™.
¥(0)=f 7

e |f n = 3, one choice is

I 0 ; 0 ol
0 _ 2x2 J .
(2 -5 0)

where the Pauli matrices o7 are defined as

01 0 —i 5 (1 0
1 _ 2 3 _
gl U Gl Y B )

e Ifn=1,2, we take
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Basic Estimates

—iy"o My =0
0O+ My on (t,z) € R x R™.
v(0) =f
e Energy Estimate
[l oo mrs Rxrry S I f s ny + 1= 0 + M)l 1 s mrmy

¢ Dispersive Bound

_n-1 o
@)@y S Y IV fllei@n

|k|<n+1
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Basic Estimates

Y _
”awii\?;?:; } n(t,z) € R x R™.

e [°° Strichartz
Let 1 < min{2:1, 1}. Then

T (=0 + M)p|| | n_1

191l L3 oo mxrny S IS a2 ge i e

(See [STRICHARTZ'97],[GINIBRE-VELO'89] , [ESCOBEDO-VEGA '97]...). Key points:
@ Decay in time,
® Saves é derivatives over Sobolev embedding
(O ee ey IO e
< n —iyt n
P T S 1 Y SO
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Cubic Dirac Equation
iy + My = () "
5(0) = f } n(t,x) e R xR".

here ¢ = 4T+ is the Dirac adjoint. Also known as Soler Model.

Basic Questions:

©® (LWP) Given data f € H® can we find a time 7" > 0 and a unique solution
¥ € C([0,T], H*) which depends continuously on the data?

® (GWP and asymptotic behaviour) Can we extend local solution to a global
solution ¢ € C(R, H*)? What happens as t — co?

® (special solutions) Existence/characterisation of soliton solutions? Stability
of soliton solutions?
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Conserved Quantities

—Z’Y'uap,’(/}—’—Mw: (ww)¢} on (tvx) ERXRn

P(0) = f

e The Charge
QY] = l[¥llr2

and the Energy
i 0 35,0 L= \2
Bl = [ 500w - 30°0) + 5 (50) de

are conserved under the flow (thus Q[¢] = Q[f] and E[¢| = E[f]).
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Scaling
—iy*Oh + My = (@¢)¢ n(t,r) € R x R",
(0) = f ’

o If M =0 and ¢(t,z) is a solution, then ¢ (¢, ) = A2(\t, Az) also a
solution.

. on—1 . .
e Rescaling leaves H = norm invariant

= Cubic Dirac equation is critical in H "= .

e In particular, we have the following expectation from data f € H®:

n—1
2
n—1
2

problem locally well-posed

s =z

s <

problem ill-posed
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Current state of the art n» = 2, 3: small data gwp and scattering

Theorem (Bejenaru-Herr'15, 16, Bournaveas-C.'15)
Letn = 2,3 and M > 0. There exists ¢ > 0 such that if||fHHn51 < € then there

exists a global solutiony € C(R, H %) which is unique in a certain subspace,
and depends continuously on the data. Moreover 1) scatters to a linear solution
ast — +oo, thus there exists V1o with (—ir*"0,, + M)+ = 0 such that

lim_[6(0) ~ Yol 22 =0,

t—+oo

¢ Result also holds in the case of the Thirring Model

—iv* O + Mip = (vy*h)v,0.
When n = 3 can also add combinations of
(DY), @)Y, (Y)Y
1.2.,3

where 75 = 709142~3 (essentially any Lorentz covariant nonlinearity).
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Current state of the art » = 1: large data gwp and small data
modified scattering

Theorem (C.’12, C.-Lindblad’16)

Letn =1 and M > 0. Then cubic Dirac equation is GWP from large data in
L?(R). Moreover, if M > 0 and

() fll s < 1

then we have the pointwise asymptotics as p = \/t? — 2% — oo

Y1+ P2 =

wl—ﬁ (#Ar(,5)+e %A (p,%)) + 0((15196);))

s \/tiﬁ (4100, 8) %A (, %)) + o((tix)p)

with Ay (p,y) = e2=Wlne g, () and YT = (1, s).

e For linear Dirac A+ = f1(y) (i-e. no log correction)
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Previous Results for Cubic Dirac:

e Local well-posedness for s > 1 (subcritical range) due t0 (escosevo-veen 971.

e Global well-posedness and scattering when s > 1 and M > 0, or s =1 and
some additional angular regularity due to [MAGCHIHARA-NAKANISHI-OZAWA '03,

MACHIHARA-NAKAMURA-OZAWA'04, MACHIHARA-NAKAMURA-NAKANISHI-OZAWA'05] .
e If n = 2, local well-posedness in subcritical regime ieecen 141
e If n =1, gwp for regular data =078, SUbCritical large data global existence

S > 0 [SELBERG-TESFAHUN'10],

® EXiStence Of SO“tary wave SOlUtiOnS [STRAUSS-VASZQUEZ '86,CAZENAVE-VASZQUEZ '86,MERLE '88,

ESTEBAN-SERE'93, ...] )
P(t,z) = e, (z).

° S’[ablll’[y of Solitary WaVES [BousaiD-CUCCAGNA'12, CONTRERAS-PELINOVSKY-SHIMABUKURO'16,

BOUSSAID-COMECH'16...]
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Sketch of proof: n = 2,3

Can reduce proof of theorem to constructing Banach space X (for the solution)
and N (for nonlinear term) such that

(1) X controls the data space L*H?,

[Pl oo e reny S 1W0lIx -

(2) ‘Generalised Energy inequality’

[¥llx S 19O0) [ ®ny + (=" O + M)W | N
(3) Nonlinear Estimate

1)l < Nl

(1) + (2) + (3) = well-posedness in H®.
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First Attempt: n =3

Take X = L°H: N LILS([0,T] x R3) (with ¢ > 2) and
N =LIH:([0,T] x R3).
e Energy estimate is true (Strichartz type estimates), but nonlinear estimate
loses a power of T since

[l s my = 19*VoWlls 2 S 1Nz oo 9l ge s
and we only have

1 1
191l L2 Lo jo,myxr3y S T2 7 [[llx
e However does give Iwp for s > 1 escoseno-vean 971, @nd can be pushed to give
gwp when s > 1, m > 1 or have additional angular regularity
[MACHIHARA-NAKAMURA-NAKANISHI-OZAWA'05]
* Endpoint case requires L7 L2°(R'™™) bound. Unfortunately this estimate
fails kuameruan-Macreoon 93], also fails in Lt2 (R, BMOI (Rg)) [MONTGOMERY-SMITH '98].
e To improve need two further ingredients:
© Null Structure and bilinear estimates (without structure, blow-up can occur
[LINDBLAD’96, D’ANCONA-OKAMOTO'16] )
® Replacement for missing L7 L° estimate.
14/29
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Null Structure: n =1
Let —iv"9,4 = 0 and consider the bilinear term 1.

o Solution is of form v (t,z) = (;Ei B 2 jgg i g) and

¥ = 23[fH (@ — t)g(x +1)].

e Thus v1 is product of waves traveling in different directions!
e Easy consequence:

[0ll,s < e,
¢ Note that

WPl e = 1F@ = OF + gl +DP|| 2 = oo

So bilinear L7 , estimate fails for generic product.
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Null Structure: n > 1

Let —iy*d,1 = 0 and consider the bilinear term ).
e Introduce potential
— i7" O = 1.
Then Oy = 0 and
P = Q(p, )

where @ is sum of classical null forms
Qv (u,v) = 0yud,v — 0, ud,v, Qo(u,v) = 0"*ud,v

e These bilinear forms have improved regularity/decay properties and have
been We"‘StUdied [KLAINERMAN-MACHEDON'93], [KLAINERMAN-FOSCHI'00], [LEE-VARGAS'08]

e One consequence:

[760 S IO O], o

2

e Again estimate fails for generic products like |¢|%.
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Missing L?L2° Strichartz estimate: The Knapp example
Let f € L2 with

supp f C {l¢| = A, 0§, w) <a},  wesS™

e Corresponding solution to wave equation is

(e—it\/jf) (z) = / e—it\{\f(g)eiw{df _ efit(\f\fﬁ-w) A(g)ei(w—tw).gdé..

R™
o If [t| < Aa~2 then
tle—¢-wy <1 = el 1y
and therefore solution is essentially traveling wave
R (@) & flo - tw)

« For Knapp example, dispersion does not kick in until times [t| > Aa~2. In
particular, for o small, times can be very large...
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Knap Example and Null Frames

Let f € L2 with
supp f C {[¢| = A, 0(&,w) < af.

e Fortimes [t| < T = Aa~2, we have seen that
IV f(2) ~ fo - tw),
e In particular, this implies that

n—1

L= S (ad) 2

_itv—A 1 A
||X(%)e ! Af||L§L;<> ~Tz|f a”f”Lg-

e On the other hand, if we introduce the null frame

1
ly=t+ 2w, xw::cfi(tJr:ﬂw)w

then computation gives

it/ — n—1
() f s e S (@) 1 fllz2

which is much smaller!!
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Knap Example and Null Frames

Let f € L2 with
supp f C {[¢| = A, 0(&,w) < af.

ty=t+z- w, xwzx—i(t+$~w)w

Moral: L?L° bad, but if we adapt frame to f, the we do have acceptable
L? L3 bounds.

e This idea was introduced by Tataru in work on wave maps mmeuo1;, and played
a crucial role in resolving the small data global well-posedness theory.

Compare to n = 1 case: solution to wave equation given by traveling waves
flea—t)+glx+1)

Clearly if [ f(x — )llpz 10 = 00 but [|f (@ — )]l 12,1, = 1 ]1z.

rx—t " x+t

Exploits focusing property of the wave, rather than dispersion.

Timothy Candy — Large time asymptotics for the Dirac equation 19/29



Replacement for L2 L>°: The plane wave space P/ (k)

e Let k C S"! be a cap on the sphere (so a set of directions). Then ¢(¢, z) is
a PW (k) atom if there exists w € 2k such that

16llL2 1o < 1.

o We then define PW (k) to be the corresponding atomic Banach space
PW (k) = { S o ) (c;) € (N), ¢;isa PW(x) atom }
J

e Basic Properties:
e PW (k) is a Banach space
e Given any w € &, have bound

lullowee < llullzz ro
IR,

—> have freedom to adapt frame to the function u
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Summary: n = 2,3

o PW (k) spaces form a suitable replacement for missing L? L° estimate.

e Price you have to pay is you need energy estimates in null frames, usually
gives a loss, but for cubic Dirac null structure gives additional cancellation.

¢ Need bilinear estimates in Lfﬁz, exploits null structure to get sharp bounds.

e Small data global well-posedness follows by iterating in spaces base on
PW (k), Strichartz type norms, X** norms, and LfSLiw type norms.

21/29
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Proof: n =1

e Again, key ingredients are bilinear null form estimates, and null frames
(which now take the simple form of null coordinates t £ x).

e Conservation of charge, together with a nonconcentration argument (charge
cannot concentrate at a point), implies large data result.

e Proof of scattering requires weighted energy estimates across hyperboloids
7 =12 — 2. Idea is to remove expected linear behaviour, control error
estimates using energy estimates, and reduce to an ODE of the form

0.U = ~|U|PU
T

which gives the log correction (strategy has been used in earlier work on
Klein-Gordon equations ppe.osron;, Schrodinger equation (unosiao-sorrerosy).
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Dirac-Klein-Gordon system: previous results in n = 3.

—iy O, + My = ¢y
O +m?¢ =y

the scalar ¢ : R!*" — R and spinor ¢ : R'*" — C~. Masses satisfy M, m > 0.

o Scaling is (1/(0), (0),3;¢(0)) € L? x Hz x H™=.

. . 1 1
e Local We||-posedness is known in H¢ x .I:I§+6 X I’I7§+6 [D’ANCONA-FOSCHI-SELBERG'07].
Builds on earlier work of (kianervan-Macreoon'ss] [Beacs-Bezaro'96] [Bournaves'99] [FANG-GRILLAKIS'05].

e Global well-posedness for large "symmetric" data holds icuaoau-cuassev7a,

[BACHELOT'89], [DIAS-FIGUEIRA'91].
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Dirac-Klein-Gordon system: previous results in n = 3.

—iy" 0,0 + Mip = ¢
O¢ +m?p = P

e If 2M > m or M = m = 0, have global well-posedness and scattering for
small data in (2)7'B9; x (Q)71BZ | x ()71 By 7 wmera With
(Q) = 1+ (~Ag)=.

e If 2 > m, have global well-posedness and scattering for small data in
1 1
He€ x [{54’6 X I{7§+6 [BEJENARU-HERR'14].

24/29
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Scattering in resonant region

—i Oup + Mip = ¢
06 +m?¢ = gy

Theorem (C.-Herr'16)

Let2M >m >0ando >0, 0r0 < 2M < m and o > 32. Then DKG is globally
well-posed and scatters for small data in ()~ L2 x <Q)—UH§ X ()" H, 5

e Endpoint result would be o = 0 (i.e no angular derivatives)

 Main additional difficulty is presence of resonant interactions in nonlinearity
(i.e. (¥)) behaves like linear solution).
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Resonant Regions

— "0 + Mip = ¢ip
O¢ +m?¢ = ¢

A computation gives

2M > m = No resonances
2M =m = resonances but cancelled by null structure
2M < m = resonances not cancelled by null structure.

However: If 2M < m we have transversality on resonant set

= can exploit this via bilinear restriction estimates.
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Transference in /2

Theorem (C.-Herr'16)

Letp > 283, Let A; C {—% < [¢] <4} and ®; : A; — R be smooth phases
such that for every £ € A1, n € Ay we have the transversality condition

[V®1(§) — V®a(n)| 2 1
and a "curvature" condition holds. If suppu C Ay and supp©v C A, we have

||UU||LP LRI S ||U||v2 ||U||v2 .

Here [lul|yz = [Jul| o2 + |ulyz with

ulyz = sup (> [e” PV u(t;) — e Tyt g7, )
& t;€Z j v

=

and Z = {... <t; <t;j41 <tji2 <..}is collection of all increasing sequences.
The spaces VP and UP first introduced by Tataru in unpublished work on wave
maps, studied SyStematically in [KOGH-TATARU'05] [KOGH-TATARU'07].
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Transference in 172
Theorem (C.-Herr'16)

Letp > 283, Let A; C {—% < [¢] <4} and ®; : A; — R be smooth phases

such that for every £ € A1, n € Ay we have the transversality condition
[V1(§) — V@a2(n)| 2 1

and a "curvature" condition holds. If suppu C Ay and supp©v C A, we have

||UU||LP LRI S ||U||v2 ||U||v2 .

« Homogeneous case u = e¢*®1(=1V) f 4 = ¢®2(=V) due t0 (mo-varors-veenss,
WOLFF'01, TAO'03, LEE-VARGAS'10, BEJENARU'16...]

o Key point is that range of p improves significantly in presence of
transversality.

e Interpolating with Strichartz estimates gives result for p < 2 close to 2
istereenz-manaviol. FUI range of p requires adapting induction on scales
arguments of Tao and Wolff to V.
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Open Problems

© Endpoint DKG: Cubic Dirac the small data theory is well-understood. Some
gaps remain for the DKG equation:

Do we have GWP for DKG in L2 x Hz x H™2?

® “Medium” Data Cubic Dirac: If n = 3, then the Dirac equation is energy
supercritical, thus no obvious reason why generic large data solutions
should stay bounded.

Can we construct blow-up solutions for cubic Dirac?

A related question relates to a ground state, can we find a minimum (in
some version of “energy” or norm) soliton?

@ Scattering for Cubic Dirac in n = 1: The modified scattering result is far from
optimal. Natural question is if we can extend result to L. First step:

Is there a way to characterise/understand the scattering state in L??
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