
On the Dirac equation with potential and
the Lochak–Majorana condition

Piero D’Ancona
Dipartimento di Matematica
Sapienza Università di Roma

Linear and Nonlinear Dirac Equation
Como, February 8–13 2017



References

Partly based on joint works with Mamoru Okamoto (Shinshu
University, Nagano) and Federico Cacciafesta (Milano Bicocca)

D.: Kato smoothing and Strichartz estimates for wave
equations with magnetic potentials, CMP 2015
D.-Cacciafesta: Endpoint estimates and global existence for
the nonlinear Dirac equation with potential, JDE 2013
D.-Okamoto: Blowup and ill-posedness results for the Dirac
equation without gauge invariance, EECT 2016
D.-Okamoto: On the cubic Dirac equation with potential and
the Lochak–Majorana condition, in progress



Introduction

Notations: the Dirac operator is the operator on L2(R3;C4)

D = i−1
(
α1

∂

∂x1
+ α2

∂

∂x2
+ α2

∂

∂x3

)
= i−1α · ∂

where αj are the Dirac matrices

α1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 α2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 α3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



D is selfadjoint, non positive, with σ(D) = R
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Mass represented by a termmβ =
(
I2 0
0 −I2

)
,m ≥ 0

We have then σ(D +mβ) = (−∞,−m] ∪ [m,+∞)

We denote the corresponding unitary group with

u(t, x) = eitDf ∈ C(R, L2) (f ∈ L2)

u solves the constant coefficient, 4 × 4 hyperbolic system with
multiplicity 2

iut + Du = 0, u(0, x) = f(x) ∈ L2(R3;C4)
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The commutation identities

α∗
j = αj, β∗ = β, β2 = I4, βαj + αjβ = 0 for j = 1, 2, 3,

αjαk + αkαj = 2δjkI4 for j, k = 1, 2, 3,

imply
D2 = −∆I4

Thus massless Dirac can be reduced to wave equations

(D + i∂t)(D − i∂t) = (−∆ + ∂2
tt)I4

and massive Dirac to Klein-Gordon equations

(mβ + D + i∂t)(mβ + D − i∂t) = (m2 − ∆ + ∂2
tt)I4
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External potentials

QED prescriptions:

describe the field (E,B) via the vector potential

A = (A0, A1, A2, A3)

B = ∇ × (A1, A2, A3), E = ∇A0 − ∂t(A1, A2, A3)

introduce the field into the equations via the rule

∂µ → ∂A
µ = ∂µ − iAµ, µ = 0, . . . , 4

∂A
t = ∂t − iA0, DA = i−1

3∑
j=1

αj∂
A
j

Lochak–Majorana 2017-02-08 4/39



This leads naturally to the Maxwell–Dirac system, with a potential
evolving in time, or the simpler Dirac-Klein-Gordon system:

(−□ +M)ϕ = g ⟨βψ, ψ⟩C4 , M ≥ 0, g > 0
(i∂t + D + βm)ψ = gϕβψ, m ≥ 0

(meson + Dirac field interacting via Yukawa coupling)

The scaling critical space is

(ψ0, ϕ0, ϕ1) ∈ L2 × Ḣ1/2 × Ḣ−1/2

ψ(t, x) −→ L−3/2ψ(t/L, x/L), ϕ(t, x) −→ L−1ϕ(t/L, x/L)
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Results available without using the algebraic structure:
LWP inH1+ϵ ×H3/2+ϵ ×H1/2+ϵ: classical, energy estimates
and Sobolev embeddings; GWP for small, smooth data.
Bachelot 88
LWP inH1/2+ϵ ×H1+ϵ ×Hϵ: Strichartz estimates.
Ponce-Sideris 93

Using the null structure:

Higher regularity ϕ ∈ H2: null structure in KG.
Klainerman-Machedon 92, Beals-Bezard 96
LWP inH1/2 ×H1 × L2: null structure in Dirac squared.
Bournaveas 99
LWP inH1/4+ϵ ×H1 × L2: same idea. Fang-Grillakis 05
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Using the full algebraic structure it is possible to prove an almost
optimal result:

Theorem (D.-Foschi-Selberg 07)

DKG in 1 + 3D is LWP for (ψ0, ϕ0, ϕ1) ∈ Hε ×H1/2+ε ×H−1/2+ε

Tesfahun 07: LWP inHs ×Hr ×Hr−1 for (s, r) in an open
convex region emanating from (0, 1/2)

Many results available in 1+1D, a few in 1+2D and for the more
general Maxwell–Dirac system
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The main problem

Simplified model for DKG/MD: cubic Dirac equation with potential,
for a field u(t, x) : R × R3 → C4

iut + Du+ V (x)u = ⟨βu, u⟩ βu, u(0, x) = f(x)

where V (x) = V (x)∗ a Hermitian 4 × 4 matrix

Most of the following results hold for more general cubic (gauge
invariant) nonlinearities P3(u)
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The ‘true’ model from QED corresponds to

V (x) = A0I4 + A1(x)α1 + A2(x)α2 + A3(x)α3

A0 ≡ 0 is not restrictive, via the choice of gauge

ũ = eiχu, Ãµ = Aµ + ∂µχ

In the following I shall use A0 with a different meaning!
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The unperturbed equation

Classical unperturbed NLD (with V (x) = 0)

iut + Du = F (u), u(0, x) = f(x)

with a homogeneous nonlinearity

F (u) ∼ |u|γ, γ ≥ 3

Global existence of smallHs solutions:

early results: Reed, Najman, Moreau, Bachelot, Dias-Figueira
and others
Escobedo-Vega 97: γ > 3 and s > 3

2 − 1
γ−1

Machihara-Nakamura-Ozawa 04: γ = 3 and s > 1
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GWP for smallH1 data a long standing open problem, solved:
Bejenaru–Herr 15: massive casem > 0
Bournaveas–Candy 15: massless casem = 0

This kind of result seems beyond reach for V (x) ̸= 0

However:
Machihara-Nakamura-Nakanishi-Ozawa 05: global existence
of smallH1 solutions provided the data are radial, or have
some additional angular regularity

Tool: endpoint Strichartz estimate with angular regularity
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Strichartz estimates

Using (D + i∂t)(D − i∂t) = (−∆ + ∂2
tt)I4 we can represent the

Dirac flow in terms of the wave flow

eitDf = cos(t|D|)f + i
sin(t|D|)

|D|
Df, |D| = (−∆)1/2

Strichartz estimates for the WE apply to Dirac
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Strichartz+Sobolev gives

∥|D|
n
r

+ 1
p

− n
2 eitDf∥LpLr ≲ ∥f∥L2

for all p, r such that

p ∈ [2,∞] 0 < 1
r

≤ 1
2

− 2
(n− 1)p

.

The endpoint (p, r) = (2,∞) is false for general data f

(Actual counterexamples are known for n = 3 but it should not be
difficult to extend to n ≥ 4)

Lochak–Majorana 2017-02-08 13/39



The endpoint case

Klainerman-Machedon 93: endpoint estimate false for Dirac/wave

∥eitDf∥L2L∞ ̸≲ ∥|D|f∥L2 (n = 3)

If it were true, it would give a one–line proof of GWP inH1

Replacing L∞ with BMO does not help
Restricting frequencies does not help
Similar situation for the 2D Schrödinger equation (in the
radial case, estimate false but a BMO estimate or an
estimate with loss of angular regularity can be proved)
For Schrödinger, the nonhomogeneous endpoint-endpoint
estimates are false but the endpoint-non endpoint
combinations are true
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Klainerman-Machedon 93: for the radial 3D WE the estimate holds

f = f(|x|) =⇒ ∥eitDf∥L2L∞ ≲ ∥|D|f∥L2 (n = 3)

Elementary proof:

sin(t|D|)
|D|

f = c

|x|

ˆ |x|+t

||x|−t|
sf(s)ds ≲M(g)(t)

M(g) is the maximal function of g(s) = sf(s)

=⇒
∥∥∥∥∥sin(t|D|)

|D|
f

∥∥∥∥∥
L∞

x

≲M(g)(t)

and by a standard maximal estimate∥∥∥∥∥sin(t|D|)
|D|

f

∥∥∥∥∥
L2

t L∞
x

≲ ∥g∥L2(R) = ∥sf(s)∥L2
s(R) ≃ ∥f∥L2(R3)

Fang-Wang 06: similar results in dimension n ≥ 3
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Estimates with angular regularity

The tempting argument
radial symmetry =⇒ endpoint estimate =⇒ GWP

does not work for Dirac since radial data ≠⇒ radial solution

The Dirac operatorD flips couples of harmonics with different
eigenvalues. The natural decomposition is

L2(R3)4 ≃
∞⊕

j= 1
2 , 3

2 ,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

L2(0,+∞; r2dr) ⊗Hmjkj

where theHmjkj
are 2-dimensional
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Machihara et al. 05:

∥eit|D|f∥L2
t L∞

|x|L
p
ω
≲ √

p · ∥|D|f∥L2 ∀p < ∞

for the norm (obvious modification for a = ∞)

∥f∥La
|x|L

b
ω

=
(´∞

0 ∥f(r · )∥a
Lb(Sn−1)r

n−1dr
) 1

a

Combined with Sobolev embedding on S2 this gives the estimate
with angular (loss of) regularity

∥eit|D|f∥L2
t L∞

x
≲ Cϵ∥|D|Λϵ

ωf∥L2 , Λω = (1 − ∆S2)
1
2

This gives GWP for cubic NDirac for data with small ∥|D|Λϵ
ωf∥

norm, which includes radialH1 data
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Estimates with angular regularity for dispersive equations:
Hoshiro 97 (to my knowledge, first who noticed)
Machihara-Nakamura-Nakanishi-Ozawa 05
Sterbenz-Rodnianski 05
Fang-Wang 06, 08
Sogge 08
Jiang-Wang-Yu 10
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The Dirac equation with a small potential

Consider the equation

iut + Du+ V (x)u = P3(u, u), u(0, x) = f(x) (1)

with V (x) = V (x)∗ and for some s > 1, C, δ > 0

∥Λs
ωV (|x| · )∥L2(S2) ≤ δ

v(x)
, ∥Λs

ω∇V (|x| · )∥L2(S2) ≤ C

v(x)
,

where v(x) = |x| 1
2 | log |x|| 1

2 + + |x|1+.

In Cacciafesta-D. JDE 13 we extended the result of Machihara et al.
to the case of small potentials V , i.e., with δ ≪ 1
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Theorem (Cacciafesta-D. JDE 13)

Let P3(u, u) be a C4-valued homogeneous cubic polynomial, V as
above with δ ≪ 1 and s > 1. Then for all initial data with

∥Λs
ωf∥H1 ≪ 1

the Cauchy problem (1) admits a unique global solution u ∈ CH1.
Moreover u ∈ L2L∞ and Λs

ωu ∈ L∞H1.
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Main result 1: large potentials

In D.-Okamoto 17 we extend the previous result to large potentials,
with sharper decay and regularity conditions

Decompose V (x) as

V = A1α1 + A2α2 + A3α3 + A0β + V0

with Aj : R3 → R and V0 = V ∗
0 : R3 → M4(C)

The Aj can be large, while V0 is a small perturbation
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Define the dyadic norm on R3

∥σ∥ℓ1L∞ := ∑
j∈Z ∥σ∥L∞(2j≤|x|<2j+1), ℓpLq similar

(e.g.: σ(x) = C|1 + | log |x||−ϵ ∈ ℓ1L∞ for ϵ > 1)

We assume that for some s > 1 and δ > 0
D + V is selfadjoint with domainH1(R3;C4)
0 is not an eigenvalue or resonance ofD + V

|x|∥Λs
ωV (|x| · )∥L2(S2)+|x|⟨x⟩∥Λs

ω∂V (|x| · )∥L2(S2) ∈ ℓ1L∞

|x|1/2|A0| ∈ ℓ1L∞

|x||V0| + |x|2|V0| ∈ ℓ1L∞ with norm δ ≪ 1
(the actual assumptions are slightly weaker)
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Theorem (D.-Okamoto 2017)
Under the previous assumptions, if δ ≪ 1 then for all initial data
with ∥Λs

ωf∥H1 ≪ 1, Problem (1) has a unique global solution
u ∈ CH1 ∩ L2L∞ with Λs

ωu ∈ L∞H1.
Moreover u scatters to a free solution, i.e., there exists
u+ ∈ Λ−s

ω H1 such that

lim
t→∞

∥Λs
ωu(t) − Λs

ωe
it(D+V )u+∥H1 = 0,

and similarly for t → −∞.

Lochak–Majorana 2017-02-08 23/39



Main result 2: large data
Consider the subspace of C4

E := {z ∈ C4 : z1 = z4, z2 = −z3} (2)

Equivalent definition (γ = iγ2):

z ∈ E ⇐⇒ γz = z, γ :=


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


Lochak–Majorana condition

Let f(x) ∈ L2(R3;C4). For a.e. x ∈ R3,

f(x) ∈ E.

(More generally, ∃θ ∈ R s.t. eiθf ∈ E)
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Two facts:
The LM condition is preserved by the free Dirac flow:
if f satisfies LM then eitDf satisfies LM for all t
f satisfies LM iff its chiral invariant ρ(f) vanishes. Here

ρ(f) := |⟨βf, f⟩|2 + |⟨α5f, f⟩|2, α5 =
(

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

)

As a consequence,
If the initial data f satisfy LM then the solution u = eitDf of
the linear equation solves also the NLD:
iut + Du = ⟨βu, u⟩βu (≡ 0)
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Bachelot 89: GWP for the cubic NLD for smallH6 perturbations of
data satisfying LM

Introduce the projection P : C4 → E

P


z1
z2
z3
z4

 =


z1 + z4
z2 − z3
z3 − z2
z1 + z4

 . (3)

Bachelot’s condition on the data can be written

∥(I − P )f∥H6 ≪ 1

In particular f can be large
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We extend the result to a nonzero potential V such that the
perturbed flow eit(D+V ) preserves the LM condition

Let V be the space of 4 × 4 matrices of the form

V :=



a z w 0
z b 0 w
w 0 −b z
0 w z −a

 : a, b ∈ R, z, w ∈ C


We shall assume

V (x) ∈ V for all x ∈ R3.

If V = A · α + A0β + V0 then V ∈ V implies
A1 = A2 = A3 = 0 i.e.

V ∈ V ⇐⇒ V = A0β + V0, V0 ∈ V
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Theorem (D.-Okamoto 2017)
Assume V as in the previous Theorem with δ ≪ 1, and in addition
assume V (x) ∈ V for all x. Then the conclusions of the previous
Theorem are valid for all data f such that

∥Λs
ω(I − P )f∥H1 ≪ 1.

Note that in
V = A0β + V0

the component A0 is allowed to be large
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Note that the existence of large solution for LM data depends
heavily on the structure of the nonlinearity

D.-Okamoto 16: If we replace ⟨βu, u⟩βu with |u|3I4, it is possible
to construct LM data such that the solution blows up in a finite
time, even in the case V (x) = 0
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Sketch of proof (Thm. 1, large potentials)

SquaringD + V gives a system of Schrödinger operators

L := (D + V )2 = −I4∆A −W − Z · ∂

where

W = B−I4A
2
0−DβA0−DV0−V 2

0 −V0(α·A+βA0)−(α·A+βA0)V0

and
Zj = i(V0αj + αjV0)

Here B represents the magnetic field:

B = i
∑
j<k

Bjkαjαk, Bjk = ∂jAk − ∂kBj
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First step: resolvent estimate

We prove a resolvent estimate for

R(z) = (−L− z)−1

of the form: for all z ∈ C with |ℑz| < 1,

∥R(z)f∥Ẋ + |z|
1
2 ∥R(z)f∥Ẏ + ∥∂R(z)f∥Ẏ ≤ C∥f∥L2

ρ

Spaces:
∥v∥2

Ẏ
= supR>0

1
R

´
|x|<R

|v|2dx

∥v∥2
Ẋ

= supR>0
1

R2

´
|x|=R

|v|2dS

∥v∥2
L2

ρ
= ∥|x|1/2ρ−1v∥L2

ρ > 0 is a weight in ℓ2L∞ (e.g. (1 + | log |x||)−ϵ, ϵ > 1/2)
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Large frequency regimeℜz ≫ 1

We use a multiplier method which gives a sharp estimate, with
explicit constants

Note that we are dealing with a system of Schrödinger equations,
but with diagonal principal part
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Small frequency regime |ℜz| ≤ C

For ℜz in any bounded region we use the Lippmann–Schwinger
equation

R(z) = R0(z)(I4 − (W + Z · ∂)R0(z))−1

where R0 is the free resolvent R0(z) = I4(−∆ − z)−1.

The operator
(W + Z · ∂)R0(z) : L2

ρ → L2
ρ

is compact and I4 − (W + Z · ∂)R0(z) can be inverted with a
locally uniform bound on the inverse, via analytic Fredholm theory
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A crucial step is proving that I4 − (W + Z · ∂)R0(z) is injective,
i.e., L has no embedded eigenvalues or resonances

For ℜz > 0 this follows by an application of Koch–Tataru 06
(Carleman estimates and absence of embedded eigenvalues)

For z = 0 this is an explicit assumption
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Second step: Kato theory for WE
Kato 65: a uniform resolvent estimate

∥AR(z)A∗f∥H ≲ ∥f∥H (4)

is equivalent to a smoothing estimate

∥AeitLf∥L2
tH

≲ ∥f∥H

D. 2015: estimate (4) implies also the smoothing estimate for the
wave flow

∥Aeit
√

Lf∥L2
tH

≲ ∥L1/4f∥H

This is almost an estimate for eit(D+V ) since
√
L ̸= (D + V ).

Some more spectral theory gives the smoothing estimate

∥|x|−1/2ρeit(D+V )f∥L2
t L2

x
≲ ∥f∥L2 , ρ ∈ ℓ2L∞
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Third step: Strichartz/smooothing estimate

By a minor modification of a result of Cacciafesta–D. 13 we obtain
the mixed endpoint Strichartz–smoothing estimate

∥Λs
ω

´ t

0 e
i(t−t′)DFdt′∥L2

t L∞
|x|L

2
ω
≲ ∥ρ−1|x| 1

2 |D|Λs
ωF∥L2

t L2

Combining this with the smoothing estimate for eit(D+V ) we get an
endpoint Strichartz estimate for the perturbed flow

∥Λs
ωe

it(D+V )f∥L2
t L∞L2 + ∥Λs

ωe
it(D+V )f∥L2

t H1 ≲ ∥Λs
ωf∥H1

GWP and scattering for small data follow easily
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Sketch of proof (Thm. 2, large data)

Assume V (x) has the special structure
a z w 0
z b 0 w
w 0 −b z
0 w z −a

 for some a, b ∈ R and z, w ∈ C

(i.e., V (x) ∈ V for all x)
Then the LM condition is preserved by the perturbed flow eit(D+V )

Thus if the data χ0 ∈ L2 satisfy LM, the corresponding solution of
the linear equation solves also the NLD:

χ = eit(D+V )χ0 =⇒ iχt +(D+V )χ = ⟨βχ, χ⟩βχ (≡ 0)
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If f are arbitrary data, the projection χ0 = Pf on E satisfies LM
and generates a global large reference solution χ(t, x) of NLD
with potential

Under the assumption

∥Λs
ω(I − P )f∥H1 ≪ 1

i.e. f close enough to LM data, we prove that the corresponding
solution u remains close to the reference solution χ for all times
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Since the reference solution χ is large, we must split [0,+∞) in a
finite number of intervals

[0,+∞) = [0, T1] ∪ [T1, T2] ∪ . . . [TN−1, TN ] ∪ [TN ,+∞)

such that the Strichartz norm of χ is sufficiently small in each one,
and then a continuation argument gives the result
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