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Introduction

Notations: the is the operator on L?(R3; C*)

0 19) 0
1 _ -1
D=1 <alal+a26 +a28x3>—z o-0

where «; are the Dirac matrices

000 1 00 0 —i 00 1 0
loo 1ol [oo0o i o0 o0 0 -1
MTlo 1t 00T |o 0 0™ |1 0 0 0

1000 i 0 0 0 0 -1 0 0

D is selfadjoint, non positive, with (D) = R
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I, O
0 -1
We have then o(D + mf) = (—oo, —m] U [m, +00)

Mass represented by a term mf = ,m >0

We denote the corresponding unitary group with
u(t,z) =™ fe CR,L* (f€L?

u solves the constant coefficient, 4 x 4 hyperbolic system with
multiplicity 2

iug +Du=0, w0,z)= f(z) € L*(R*C*)
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The

Oé; = Olj, 5* :Bv /62 = I47 /Baj —|—Oé]/6:0 forj = 172737
071877 + QpQ; = 26jkI4 fOf'j, k= 1, 2,3,

imply
D* = —AlL

Thus massless Dirac can be reduced to wave equations
(D +i0,)(D —id;) = (—A + 02) 14
and massive Dirac to Klein-Gordon equations

(mB + D +i8)(mB+ D — i) = (m> — A+ )L,
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External potentials

QED prescriptions:
@ describe the field (E, B) via the

A - (AO; A17 A27 A3)

B=Vx (Al,AQ,Ag), EZVAO—at(Al,AQ,Ag)

@ introduce the field into the equations via the rule

Oy — 0} =0,—iA,, p=0,...4

3
(924 = (9t - iAo, DA = Z’il Z ozj@f
j=1
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This leads naturally to the system, with a potential
evolving in time, or the simpler system:

(-O0+M)p=g(BY,Y)ea, M=>0,9g>0
(10 + D+ Bm) = gopp,  m >0

(meson + Dirac field interacting via Yukawa coupling)
The scaling critical space is
(10, b0, f1) € L? x H'/2 x H™1/2

(t,x) — L3t/ L,x/L),  é(t,z) — L™ ¢(t/L,z/L)
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Results available without using the algebraic structure:

@ LWPin Hte x H3/2te x [/2+¢; classical, energy estimates
and Sobolev embeddings; GWP for small, smooth data.
Bachelot 88

@ LWPin H/2te x H1te x He¢: Strichartz estimates.
Ponce-Sideris 93

Using the null structure:
@ Higher regularity ¢ € H?: null structure in KG.
Klainerman-Machedon 92, Beals-Bezard 96

@ LWPin HY2 x H' x L% null structure in Dirac squared.
Bournaveas 99

@ LWPin HY4t¢ x H' x L% same idea. Fang-Grillakis o5
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Using the full algebraic structure it is possible to prove an almost
optimal result:

Theorem (D.-Foschi-Selberg 07)
DKG in 1 + 3D is LWP for (1o, ¢o, ¢1) € HE x HY?¥e x H~1/2+e

Tesfahun 07: LWP in H* x H" x H"~!for (s,7) in an open
convex region emanating from (0, 1/2)

Many results available in 1+1D, a few in 1+2D and for the more
general Maxwell-Dirac system
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The main problem

Simplified model for DKG/MD: with
forafield u(t,z) : R x R® — C*

iug + Du+ V(z)u = (Bu,u) fu,  u(0,z) = f(x)

where V' (z) = V(z)* a Hermitian 4 x 4 matrix

Most of the following results hold for more general cubic (gauge
invariant) nonlinearities Ps(u)
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The ‘true’ model from QED corresponds to
V(JZ') = A0[4 + A1<£L'>CY1 =+ AQ(Z’)O(Q + A3($)C¥3
Ay = 0is not restrictive, via the choice of gauge

U = eXu, A, =A,+0ux

In the following I shall use Ag with a different meaning!
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The unperturbed equation

Classical unperturbed NLD (with V' (z) = 0)

iug + Du = F(u), u(0,z)= f(z)

with a homogeneous nonlinearity

F(u) ~u]”,  ~v>3

Global existence of

@ early results: Reed, Najman, Moreau, Bachelot, Dias-Figueira

and others

. 3 1
@ Escobedo-Vega97:y > 3ands > 5 — 71

@ Machihara-Nakamura-Ozawa 04: v = 3and s > 1
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GWP for small H! data a long standing open problem, solved:
@ Bejenaru-Herr 15: massive case m > 0

@ Bournaveas-Candy 15: massless case m = (

This kind of result seems beyond reach for V(x) # 0

However:

@ Machihara-Nakamura-Nakanishi-Ozawa 05: global existence
of small H' solutions provided the data are , Or have
some additional

Tool: Strichartz estimate with
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Strichartz estimates

Using (D + 10,)(D — i0;) = (—A + 0%) I, we can represent the
in terms of the
_sin(¢| D)

"™ f = cos(t|D|) f + |D|

Df, |D|=(-A)"?

Strichartz estimates for the WE apply to Dirac
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gives

n, 1 _n .
1D 2™ fllpore S I1f |22

for all p, r such that

€ [2, 0] O<1<1 2
p 0 r=2 (n-1p

The endpoint (p, ) = (2, 00) is for general data f

(Actual counterexamples are known for n = 3 but it should not be
difficult to extend to n > 4)
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The endpoint case

Klainerman-Machedon 93: endpoint estimate for Dirac/wave

1" Fllzzree ZNIDIfllz2 (n=3)
If it were true, it would give a one-line proof of GWP in H!

@ Replacing L> with BM O does not help
@ Restricting frequencies does not help

@ Similar situation for the 2D Schrédinger equation (in the
radial case, estimate false but a BM O estimate or an
estimate with loss of angular regularity can be proved)

@ For Schrodinger, the nonhomogeneous endpoint-endpoint
estimates are false but the endpoint-non endpoint
combinations are true
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Klainerman-Machedon 93: for the 3D WE the estimate holds
F=10zl) = 1€ flleer~ SNDIflle (n=3)
Elementary proof:

sin(t|D|) ¢ [l
—_—— = — sf(s)ds < M
D] f o s f(s)ds S M(g)(t)

M (g) is the maximal function of g(s) = sf(s)

sin(t|D|)

D S M(g)(t)

and by a standard maximal estimate

sin(t| D))

o] !

S llgllzze) = lIsf(s)llz@w) = [1f]lz2@s)
L2Lg°

Fang-Wang 06: similar results in dimension n > 3
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Estimates with angular regularity

The tempting argument
radial symmetry —> endpoint estimate —> GWP

does not work for Dirac since =

The Dirac operator D couples of harmonics with different
eigenvalues. The natural decomposition is

L*(R?)* ~ | b P P L*0,+o0;r*dr) @ Hp,

o my=—j k= (j+1/2)

where the H,, . are
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Machihara et al. o5:

e P fll 2o o S VP IIDIfllz VP < o0

£l

for the norm (obvious modification for a = o0)

1l s = (S 0 gy tdr)

Combined with Sobolev embedding on S? this gives the estimate
with angular (loss of) regularity

NI

el 2ree S CIDIAGS 22, Aw = (1= Agz)

This gives for data with Il| DIAS £
norm, which includes
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Estimates with angular regularity for dispersive equations:

Hoshiro 97 (to my knowledge, first who noticed)

Machihara-Nakamura-Nakanishi-Ozawa 05
Sterbenz-Rodnianski 05

Fang-Wang 06, 08

Sogge 08

Jiang-Wang-Yu 10
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The Dirac equation with a small potential

Consider the equation

iug + Du+V(z)u = Ps(u,w), u(0,z2)= f(z)| ()

with V(z) = V(z)* and forsome s > 1,C,§ > 0

S 6 S C
ISV (el ey < e IALIV (e Dl <

where v(z) = |z|2|log |z||2+ + |z|'*.

In Cacciafesta-D. JDE 13 we extended the result of Machihara et al.
to the case of small potentials V/, i.e., with § < 1
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Theorem (Cacciafesta-D. JDE 13)

Let P3(u,u) bea C*-valued homogeneous cubic polynomial, V as
above with § < 1 and s > 1. Then for all initial data with

A fllem < 1

the Cauchy problem (1) admits a unique global solution u € C H".
Moreover u € L2L>™ and Afu € L¥H".

Lochak-Majorana 2017-02-08 20/39



Main result 1: large potentials

In D.-Okamoto 17 we extend the previous result to ,
with sharper decay and regularity conditions

Decompose V' (x) as

‘V:A1a1+A2a2+A3a3+AOB+%‘

with 4; : R®* —» Rand Vy =V : R® — M,(C)

The A, can be , while Vj is a perturbation
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Define the dyadic norm on R?
||O'||glLoo = ZjEZ ||O'||Loo(2j§|x|<2j+1), P L4 similar
(eg:o(x) =C|1+ |logl|z||~¢ € 1 L™ fore > 1)

We assume that for some s > 1 and d > 0
e D + V is selfadjoint with domain H'(R3; C*)
@ (is not an eigenvalue or resonance of D + V'
o [ellIALV (ja]zaee) @) IALDV (] )| ooy € €L
o |z|V/2Ay| € 1L
o |z||Vo| + |z|*|Vo| € £ L with norm § < 1

(the actual assumptions are slightly weaker)
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Theorem (D.-Okamoto 2017)

Under the previous assumptions, if & < 1 then for all initial data
with || A2 f|| g1 < 1, Problem (1) has a unique global solution
uwe CH'N L2L>® with Au € L*H'.

Moreover u scatters to a free solution, i.e., there exists

uy € A *H' such that

lim [AZu(t) — AP uy [ =0,

and similarly fort — —oo.
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Main result 2: large data

Consider the subspace of C*
E = {Z S C4Z 21 = 24,29 = —23} (2)

Equivalent definition (7 = i9):

0 0 0 1

_ 0 0 -1 0

zelE <= 7yz=7%, T=10 -1 0 o0
1 0 0 0

Lochak-Majorana condition

Let f(x) € L?(R3;C*). Fora.e. 7 € R?,
f(z) € E.

(More generally, 30 € Rst. e’ f € E)
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Two facts:

@ The LM condition is preserved by the free Dirac flow:
if f satisfies LM then e*® f satisfies LM for all ¢

@ f satisfies LM iff its p(f) vanishes. Here

00 —
o) = |(BF, ) + asf, PS5 = ( §

As a consequence,

e If the initial data f satisfy LM then the solution u = €™ f of
the linear equation solves also the NLD:
iug + Du = (Bu, u)fu (= 0)
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Bachelot 89: GWP for the cubic NLD for small H perturbations of

data satisfying LM

Introduce the projection P : C* — E

21 21+ 24
22 2y — 23
P =7 =
z3 23— %2
24 21+ 24

Bachelot’s condition on the data can be written
(I = P)fllge < 1

In particular f can be
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We extend the result to a nonzero potential V' such that the
perturbed flow et(D+V) preserves the LM condition

Let V be the space of 4 x 4 matrices of the form

a z w 0

V= c b0 ca,beR, z,weC
w 0 —=b
0 w zZ -—a

We shall assume
V(z) €V forall x € R

fV =A-a+ Agp + Vythen V € Vimplies
A1:A2:A3:Oi.e.

VeV <«— V=A4p8+V,, Vo eV
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Theorem (D.-Okamoto 2017)

Assume V' as in the previous Theorem with § < 1, and in addition
assume V' (x) € 'V for all x. Then the conclusions of the previous
Theorem are valid for all data f such that

AL = P)fllm < 1.

Note that in
V=A4A08+W

the component Ay is allowed to be

Lochak-Majorana 2017-02-08 28/39



Note that the existence of large solution for LM data depends
heavily on the structure of the nonlinearity

D.-Okamoto 16: If we replace (Bu, u)Su with |u|?I4, it is possible
to construct LM data such that the solution blows up in a finite
time, even in the case V(z) =0
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Sketch of proof (Thm. 1, large potentials)

Squaring D + V gives a system of Schrodinger operators
L=(D+VY?=-LAy-W—-2Z-0

where

W = B—I,AZ-DBA—DVy—Vi—Vy(a-A+BAg)—(a-A+BA) Vo

and
Zj = i(%Oéj + Oéj‘/o)

Here B represents the

B =1iY_ Bjoou, B, = 0; A, — Ok B;

j<k
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First step: resolvent estimate

We prove a resolvent estimate for
R(z) = (-L—2)"
of the form: for all z € C with [3z| < 1,

IRG)fIlx + 1= IIRG) fly + 10RE) fly < ClL /1l
Spaces:
loll2. = suppso & fy r lol?da
[l = suPrso 7z Jipyor [01°dS

1/2/0_1UHL2

ol = 2
p > 0isaweightin 2L> (e.g. (1 + |log|z||)™¢ € > 1/2)
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Large frequency regime iz > 1

We use a multiplier method which gives a sharp estimate, with
explicit constants

Note that we are dealing with a of Schrodinger equations,
but with diagonal principal part
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Small frequency regime |Rz| < C

For Rz in any bounded region we use the Lippmann-Schwinger
equation

R(2) = Ro(2)(Iy — (W + Z - 0)Ry(2)) !

where R is the free resolvent Ry(2) = I,(—A — 2)7 L

The operator
(W+Z-9)Ro(z): L2 — L2,

is compactand I, — (W + Z - 0)Ry(z) can be inverted with a
locally uniform bound on the inverse, via analytic Fredholm theory
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A crucial step is proving that I, — (W + Z - 0) Ry(2) is injective,
i.e., L has no embedded eigenvalues or resonances

For Rz > 0 this follows by an application of Koch-Tataru 06
(Carleman estimates and absence of embedded eigenvalues)

For z = 0 this is an explicit assumption
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Second step: Kato theory for WE

Kato 65: a uniform resolvent estimate
[AR(2) A fllsc < |l flla¢ (4)
is equivalent to a smoothing estimate

1A fllase < 1fllsc

D. 2015: estimate (4) implies also the smoothing estimate for the

wave flow .
1A fll 25 S LA flls¢

This is an estimate for ¢“®+V) since VL # (D 4 V).
Some more spectral theory gives the smoothing estimate

2~ 2pe™ @O fll2ra S N1 fllez,  p € 2L
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Third step: Strichartz/smooothing estimate

By a minor modification of a result of Cacciafesta-D. 13 we obtain
the estimate

1AL fy @ Fat|| apee 1o S llp~ ol 2| DIALF | 212

t 7zl

Combining this with the smoothing estimate for ¢’/(?+V)

for the perturbed flow

we get an

1AL fllzpoe e + (ALY fllpzm S IALF m

GWP and scattering for small data follow easily
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Sketch of proof (Thm. 2, large data)

Assume V' (x) has the special structure

a z w 0

c b0 forsomea,b € Rand z,w € C
w 0 —b

0 w z -—a

(i.e, V(z) € Vforall x)

Then the LM condition is preserved by the perturbed flow e®*(P+V)

Thus if the data o € L? satisfy LM, the corresponding solution of
the linear equation solves also the NLD:

x=e"PVvy = iy +(D+V)x = Bx,\)fx (=0)
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If f are arbitrary data, the projection Yo = P f on E satisfies LM
and generates a global large reference solution (¢, x) of NLD
with potential

Under the assumption
AL = P) fllm <1

ie. f to LM data, we prove that the corresponding
solution u remains close to the reference solution  for all times
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Since the reference solution Y is , we must split [0, +00) ina
finite number of intervals

[O, +OO) = [O, Tl] U [Tl, TQ] U... [TNfl, TN] U [TN7 —|—OO)

such that the Strichartz norm of  is sufficiently small in each one,
and then a continuation argument gives the result
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