# On the Dirac equation with potential and the Lochak–Majorana condition

#### Piero D'Ancona

Dipartimento di Matematica Sapienza Università di Roma

Linear and Nonlinear Dirac Equation Como, February 8–13 2017



## References

Partly based on joint works with Mamoru Okamoto (Shinshu University, Nagano) and Federico Cacciafesta (Milano Bicocca)

- D.: Kato smoothing and Strichartz estimates for wave equations with magnetic potentials, CMP 2015
- D.-Cacciafesta: Endpoint estimates and global existence for the nonlinear Dirac equation with potential, JDE 2013
- D.-Okamoto: Blowup and ill-posedness results for the Dirac equation without gauge invariance, EECT 2016
- D.-Okamoto: On the cubic Dirac equation with potential and the Lochak-Majorana condition, in progress

## Introduction

Notations: the Dirac operator is the operator on  $L^2(\mathbb{R}^3;\mathbb{C}^4)$ 

$$\mathcal{D}=i^{-1}\left(\alpha_1\frac{\partial}{\partial x_1}+\alpha_2\frac{\partial}{\partial x_2}+\alpha_2\frac{\partial}{\partial x_3}\right)=i^{-1}\alpha\cdot\partial$$

where  $\alpha_i$  are the Dirac matrices

$$\alpha_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \alpha_2 = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix} \alpha_3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

 ${\mathfrak D}$  is selfadjoint, non positive, with  $\sigma({\mathfrak D})={\mathbb R}$ 

Mass represented by a term 
$$m\beta=\begin{pmatrix}I_2&0\\0&-I_2\end{pmatrix}$$
,  $m\geq 0$  We have then  $\sigma(\mathcal{D}+m\beta)=(-\infty,-m]\cup[m,+\infty)$ 

We denote the corresponding unitary group with

$$u(t,x) = e^{it\mathcal{D}} f \in C(\mathbb{R}, L^2) \qquad (f \in L^2)$$

 $\boldsymbol{u}$  solves the constant coefficient,  $4\times 4$  hyperbolic system with multiplicity 2

$$iu_t + \mathcal{D}u = 0, \quad u(0, x) = f(x) \in L^2(\mathbb{R}^3; \mathbb{C}^4)$$

#### The commutation identities

$$\begin{split} \alpha_j^* &= \alpha_j, \quad \beta^* = \beta, \quad \beta^2 = I_4, \quad \beta \alpha_j + \alpha_j \beta = 0 \quad \text{for } j = 1, 2, 3, \\ \alpha_j \alpha_k + \alpha_k \alpha_j &= 2\delta_{jk} I_4 \quad \text{for } j, k = 1, 2, 3, \end{split}$$

imply

$$\mathfrak{D}^2 = -\Delta I_4$$

Thus massless Dirac can be reduced to wave equations

$$(\mathcal{D} + i\partial_t)(\mathcal{D} - i\partial_t) = (-\Delta + \partial_{tt}^2)I_4$$

and massive Dirac to Klein-Gordon equations

$$(m\beta + \mathcal{D} + i\partial_t)(m\beta + \mathcal{D} - i\partial_t) = (m^2 - \Delta + \partial_{tt}^2)I_4$$

# External potentials

#### QED prescriptions:

ullet describe the field (E,B) via the vector potential

$$A = (A_0, A_1, A_2, A_3)$$

$$\mathbf{B} = \nabla \times (A_1, A_2, A_3), \qquad \mathbf{E} = \nabla A_0 - \partial_t (A_1, A_2, A_3)$$

• introduce the field into the equations via the rule

$$\partial_{\mu} \to \partial_{\mu}^{A} = \partial_{\mu} - iA_{\mu}, \qquad \mu = 0, \dots, 4$$

$$\partial_t^A = \partial_t - iA_0, \qquad \mathcal{D}^A = i^{-1} \sum_{j=1}^3 \alpha_j \partial_j^A$$

This leads naturally to the Maxwell-Dirac system, with a potential evolving in time, or the simpler Dirac-Klein-Gordon system:

$$(-\Box + M)\phi = g \langle \beta \psi, \psi \rangle_{\mathbb{C}^4}, \qquad M \ge 0, \ g > 0$$
$$(i\partial_t + \mathcal{D} + \beta m)\psi = g\phi\beta\psi, \qquad m \ge 0$$

(meson + Dirac field interacting via Yukawa coupling)

The scaling critical space is

$$(\psi_0, \phi_0, \phi_1) \in L^2 \times \dot{H}^{1/2} \times \dot{H}^{-1/2}$$

$$\psi(t, x) \longrightarrow L^{-3/2} \psi(t/L, x/L), \qquad \phi(t, x) \longrightarrow L^{-1} \phi(t/L, x/L)$$

#### Results available without using the algebraic structure:

- LWP in  $H^{1+\epsilon} imes H^{3/2+\epsilon} imes H^{1/2+\epsilon}$ : classical, energy estimates and Sobolev embeddings; GWP for small, smooth data. Bachelot 88
- LWP in  $H^{1/2+\epsilon} \times H^{1+\epsilon} \times H^{\epsilon}$ : Strichartz estimates. Ponce-Sideris 93

#### Using the null structure:

- Higher regularity  $\phi \in H^2$ : null structure in KG. Klainerman-Machedon 92, Beals-Bezard 96
- $\bullet$  LWP in  $H^{1/2}\times H^1\times L^2$ : null structure in Dirac squared. Bournaveas 99
- ullet LWP in  $H^{1/4+\epsilon} imes H^1 imes L^2$ : same idea. Fang-Grillakis 05

Using the full algebraic structure it is possible to prove an almost optimal result:

### Theorem (D.-Foschi-Selberg 07)

DKG in 1+3D is LWP for  $(\psi_0,\phi_0,\phi_1)\in H^{arepsilon} imes H^{1/2+arepsilon} imes H^{-1/2+arepsilon}$ 

Tesfahun 07: LWP in  $H^s \times H^r \times H^{r-1}$  for (s,r) in an open convex region emanating from (0,1/2)

Many results available in 1+1D, a few in 1+2D and for the more general Maxwell–Dirac system

## The main problem

Simplified model for DKG/MD: cubic Dirac equation with potential, for a field  $u(t,x):\mathbb{R}\times\mathbb{R}^3\to\mathbb{C}^4$ 

$$iu_t + \mathcal{D}u + V(x)u = \langle \beta u, u \rangle \beta u, \quad u(0, x) = f(x)$$

where  $V(x) = V(x)^*$  a Hermitian  $4 \times 4$  matrix

Most of the following results hold for more general cubic (gauge invariant) nonlinearities  $P_3(u)$ 

The 'true' model from QED corresponds to

$$V(x) = A_0 I_4 + A_1(x)\alpha_1 + A_2(x)\alpha_2 + A_3(x)\alpha_3$$

 $A_0 \equiv 0$  is not restrictive, via the choice of gauge

$$\tilde{u} = e^{i\chi}u, \qquad \tilde{A}_{\mu} = A_{\mu} + \partial_{\mu}\chi$$

In the following I shall use  $A_0$  with a different meaning!

# The unperturbed equation

Classical unperturbed NLD (with V(x) = 0)

$$iu_t + \mathfrak{D}u = F(u), \qquad u(0,x) = f(x)$$

with a homogeneous nonlinearity

$$F(u) \sim |u|^{\gamma}, \qquad \gamma \ge 3$$

Global existence of small  $H^s$  solutions:

- early results: Reed, Najman, Moreau, Bachelot, Dias-Figueira and others
- $\bullet$  Escobedo-Vega 97:  $\gamma>3$  and  $s>\frac{3}{2}-\frac{1}{\gamma-1}$
- ullet Machihara-Nakamura-Ozawa 04:  $\gamma=3$  and s>1

GWP for small  $H^1$  data a long standing open problem, solved:

- ullet Bejenaru-Herr 15: massive case m>0
- Bournaveas-Candy 15: massless case m=0

This kind of result seems beyond reach for  $V(x) \neq 0$ 

#### However:

ullet Machihara-Nakamura-Nakanishi-Ozawa 05: global existence of small  $H^1$  solutions provided the data are radial, or have some additional angular regularity

Tool: endpoint Strichartz estimate with angular regularity

## Strichartz estimates

Using  $(\mathcal{D}+i\partial_t)(\mathcal{D}-i\partial_t)=(-\Delta+\partial_{tt}^2)I_4$  we can represent the Dirac flow in terms of the wave flow

$$e^{it\mathcal{D}}f = \cos(t|D|)f + i\frac{\sin(t|D|)}{|D|}\mathcal{D}f, \qquad |D| = (-\Delta)^{1/2}$$

Strichartz estimates for the WE apply to Dirac

#### Strichartz+Sobolev gives

$$||D|^{\frac{n}{r} + \frac{1}{p} - \frac{n}{2}} e^{it\mathcal{D}} f||_{L^p L^r} \lesssim ||f||_{L^2}$$

for all p, r such that

$$p \in [2, \infty]$$
  $0 < \frac{1}{r} \le \frac{1}{2} - \frac{2}{(n-1)p}$ .

The endpoint  $(p,r)=(2,\infty)$  is false for general data f

(Actual counterexamples are known for n=3 but it should not be difficult to extend to  $n \ge 4$ )

# The endpoint case

Klainerman-Machedon 93: endpoint estimate false for Dirac/wave

$$||e^{it\mathcal{D}}f||_{L^2L^{\infty}} \lesssim |||D|f||_{L^2} \qquad (n=3)$$

If it were true, it would give a one-line proof of GWP in  ${\cal H}^1$ 

- ullet Replacing  $L^{\infty}$  with BMO does not help
- Restricting frequencies does not help
- ullet Similar situation for the 2D Schrödinger equation (in the radial case, estimate false but a BMO estimate or an estimate with loss of angular regularity can be proved)
- For Schrödinger, the nonhomogeneous endpoint-endpoint estimates are false but the endpoint-non endpoint combinations are true

Klainerman-Machedon 93: for the radial 3D WE the estimate holds

$$f = f(|x|) \implies ||e^{it\mathcal{D}}f||_{L^2L^\infty} \lesssim ||D|f||_{L^2} \quad (n=3)$$

Elementary proof:

$$\frac{\sin(t|D|)}{|D|}f = \frac{c}{|x|} \int_{||x|-t|}^{|x|+t} sf(s)ds \lesssim M(g)(t)$$

M(g) is the maximal function of g(s)=sf(s)

$$\implies \left\| \frac{\sin(t|D|)}{|D|} f \right\|_{L^{\infty}} \lesssim M(g)(t)$$

and by a standard maximal estimate

$$\left\| \frac{\sin(t|D|)}{|D|} f \right\|_{L^{2}_{t}L^{\infty}_{\infty}} \lesssim \|g\|_{L^{2}(\mathbb{R})} = \|sf(s)\|_{L^{2}_{s}(\mathbb{R})} \simeq \|f\|_{L^{2}(\mathbb{R}^{3})}$$

Fang-Wang o6: similar results in dimension  $n \geq 3$ 

# Estimates with angular regularity

The tempting argument

radial symmetry  $\implies$  endpoint estimate  $\implies$  GWP

does not work for Dirac since radial data ≠ radial solution

The Dirac operator  $\mathcal D$  flips couples of harmonics with different eigenvalues. The natural decomposition is

$$L^{2}(\mathbb{R}^{3})^{4} \simeq \bigoplus_{j=\frac{1}{2},\frac{3}{2},\dots}^{\infty} \bigoplus_{m_{j}=-j}^{j} \bigoplus_{k_{j}=\pm(j+1/2)} L^{2}(0,+\infty;r^{2}dr) \otimes H_{m_{j}k_{j}}$$

where the  $H_{m_ik_i}$  are 2-dimensional

#### Machihara et al. 05:

$$||e^{it|D|}f||_{L_t^2L_{|x|}^\infty L_\omega^p} \lesssim \sqrt{p} \cdot ||D|f||_{L^2} \quad \forall p < \infty$$

for the norm (obvious modification for  $a = \infty$ )

$$||f||_{L^a_{|x|}L^b_{\omega}} = \left(\int_0^{\infty} ||f(r\,\cdot\,)||_{L^b(\mathbb{S}^{n-1})}^a r^{n-1} dr\right)^{\frac{1}{a}}$$

Combined with Sobolev embedding on  $\mathbb{S}^2$  this gives the estimate with angular (loss of) regularity

$$||e^{it|D|}f||_{L_t^2 L_x^{\infty}} \lesssim C_{\epsilon} ||D|\Lambda_{\omega}^{\epsilon}f||_{L^2}, \qquad \Lambda_{\omega} = (1 - \Delta_{\mathbb{S}^2})^{\frac{1}{2}}$$

This gives GWP for cubic NDirac for data with small  $||D|\Lambda_\omega^\epsilon f||$  norm, which includes radial  $H^1$  data

#### Estimates with angular regularity for dispersive equations:

- Hoshiro 97 (to my knowledge, first who noticed)
- Machihara-Nakamura-Nakanishi-Ozawa 05
- Sterbenz-Rodnianski o5
- Fang-Wang 06, 08
- Sogge o8
- Jiang-Wang-Yu 10

# The Dirac equation with a small potential

#### Consider the equation

$$iu_t + \mathcal{D}u + V(x)u = P_3(u, \overline{u}), \qquad u(0, x) = f(x)$$
 (1)

with  $V(x) = V(x)^*$  and for some s>1,  $C,\delta>0$ 

$$\|\Lambda_{\omega}^{s}V(|x|\cdot)\|_{L^{2}(\mathbb{S}^{2})} \leq \frac{\delta}{v(x)}, \qquad \|\Lambda_{\omega}^{s}\nabla V(|x|\cdot)\|_{L^{2}(\mathbb{S}^{2})} \leq \frac{C}{v(x)},$$

where 
$$v(x) = |x|^{\frac{1}{2}} |\log |x||^{\frac{1}{2}+} + |x|^{1+}$$
.

In Cacciafesta-D. JDE 13 we extended the result of Machihara et al. to the case of small potentials V, i.e., with  $\delta \ll 1$ 

#### Theorem (Cacciafesta-D. JDE 13)

Let  $P_3(u, \overline{u})$  be a  $\mathbb{C}^4$ -valued homogeneous cubic polynomial, V as above with  $\delta \ll 1$  and s>1. Then for all initial data with

$$\|\Lambda_{\omega}^s f\|_{H^1} \ll 1$$

the Cauchy problem (1) admits a unique global solution  $u\in CH^1$ . Moreover  $u\in L^2L^\infty$  and  $\Lambda^s_\omega u\in L^\infty H^1$ .

# Main result 1: large potentials

In D.-Okamoto 17 we extend the previous result to large potentials, with sharper decay and regularity conditions

Decompose  $V(\boldsymbol{x})$  as

$$V = A_1\alpha_1 + A_2\alpha_2 + A_3\alpha_3 + A_0\beta + V_0$$

with 
$$A_j:\mathbb{R}^3 \to \mathbb{R}$$
 and  $V_0=V_0^*:\mathbb{R}^3 \to M_4(\mathbb{C})$ 

The  $A_j$  can be large, while  $V_0$  is a small perturbation

## Define the dyadic norm on $\mathbb{R}^3$

$$\|\sigma\|_{\ell^1L^\infty}:=\sum_{j\in\mathbb{Z}}\|\sigma\|_{L^\infty(2^j\le|x|<2^{j+1})},\qquad \ell^pL^q ext{ similar}$$
 (e.g.:  $\sigma(x)=C|1+|\log|x||^{-\epsilon}\in\ell^1L^\infty$  for  $\epsilon>1$ )

We assume that for some s>1 and  $\delta>0$ 

- $\mathfrak{D} + V$  is selfadjoint with domain  $H^1(\mathbb{R}^3; \mathbb{C}^4)$
- ullet 0 is not an eigenvalue or resonance of  $\mathfrak{D}+V$
- $|x| \|\Lambda_{\omega}^s V(|x| \cdot)\|_{L^2(\mathbb{S}^2)} + |x| \langle x \rangle \|\Lambda_{\omega}^s \partial V(|x| \cdot)\|_{L^2(\mathbb{S}^2)} \in \ell^1 L^{\infty}$
- $|x|^{1/2}|A_0| \in \ell^1 L^{\infty}$
- $\bullet |x||V_0| + |x|^2|V_0| \in \ell^1 L^\infty$  with norm  $\delta \ll 1$

(the actual assumptions are slightly weaker)

#### Theorem (D.-Okamoto 2017)

Under the previous assumptions, if  $\delta \ll 1$  then for all initial data with  $\|\Lambda_\omega^s f\|_{H^1} \ll 1$ , Problem (1) has a unique global solution  $u \in CH^1 \cap L^2L^\infty$  with  $\Lambda_\omega^s u \in L^\infty H^1$ .

Moreover u scatters to a free solution, i.e., there exists  $u_+ \in \Lambda_\omega^{-s} H^1$  such that

$$\lim_{t\to\infty} \|\Lambda_{\omega}^s u(t) - \Lambda_{\omega}^s e^{it(\mathfrak{D}+V)} u_+\|_{H^1} = 0,$$

and similarly for  $t \to -\infty$ .

## Main result 2: large data

Consider the subspace of  $\mathbb{C}^4$ 

$$E := \{ z \in \mathbb{C}^4 \colon z_1 = \overline{z}_4, z_2 = -\overline{z}_3 \}$$
 (2)

Equivalent definition ( $\gamma=i\gamma_2$ ):

$$z \in E \iff \gamma z = \overline{z}, \qquad \gamma := \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

#### **Lochak-Majorana condition**

Let  $f(x) \in L^2(\mathbb{R}^3; \mathbb{C}^4)$ . For a.e.  $x \in \mathbb{R}^3$ ,

$$f(x) \in E$$
.

(More generally,  $\exists \theta \in \mathbb{R} \text{ s.t. } e^{i\theta} f \in E$ )

#### Two facts:

- ullet The LM condition is preserved by the free Dirac flow: if f satisfies LM then  $e^{it\mathcal{D}}f$  satisfies LM for all t
- ullet f satisfies LM iff its chiral invariant ho(f) vanishes. Here

$$\rho(f) := |\langle \beta f, f \rangle|^2 + |\langle \alpha_5 f, f \rangle|^2, \qquad \alpha_5 = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}$$

#### As a consequence,

• If the initial data f satisfy LM then the solution  $u=e^{it\mathcal{D}}f$  of the linear equation solves also the NLD:

$$iu_t + \mathfrak{D}u = \langle \beta u, u \rangle \beta u \ (\equiv 0)$$

Bachelot 89: GWP for the cubic NLD for small  ${\cal H}^6$  perturbations of data satisfying LM

Introduce the projection  $P: \mathbb{C}^4 \to E$ 

$$P \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} z_1 + z_4 \\ z_2 - z_3 \\ \overline{z}_3 - \overline{z}_2 \\ \overline{z}_1 + \overline{z}_4 \end{pmatrix}. \tag{3}$$

Bachelot's condition on the data can be written

$$||(I-P)f||_{H^6} \ll 1$$

In particular f can be large

We extend the result to a nonzero potential V such that the perturbed flow  $e^{it(\mathcal{D}+V)}$  preserves the LM condition

Let  ${\mathcal V}$  be the space of  $4\times 4$  matrices of the form

$$\mathcal{V} := \left\{ \begin{pmatrix} a & z & w & 0 \\ \overline{z} & b & 0 & w \\ \overline{w} & 0 & -b & z \\ 0 & \overline{w} & \overline{z} & -a \end{pmatrix} : \ a, b \in \mathbb{R}, \ z, w \in \mathbb{C} \right\}$$

We shall assume

$$V(x) \in \mathcal{V}$$
 for all  $x \in \mathbb{R}^3$ .

If  $V=A\cdot \alpha +A_0\beta +V_0$  then  $V\in \mathcal{V}$  implies  $A_1=A_2=A_3=0$  i.e.

$$V \in \mathcal{V} \iff V = A_0 \beta + V_0, \quad V_0 \in \mathcal{V}$$

#### Theorem (D.-Okamoto 2017)

Assume V as in the previous Theorem with  $\delta \ll 1$ , and in addition assume  $V(x) \in \mathcal{V}$  for all x. Then the conclusions of the previous Theorem are valid for all data f such that

$$\|\Lambda_{\omega}^{s}(I-P)f\|_{H^{1}}\ll 1.$$

Note that in

$$V = A_0 \beta + V_0$$

the component  $A_0$  is allowed to be large

Note that the existence of large solution for LM data depends heavily on the structure of the nonlinearity

D.-Okamoto 16: If we replace  $\langle \beta u,u\rangle \beta u$  with  $|u|^3I_4$ , it is possible to construct LM data such that the solution blows up in a finite time, even in the case V(x)=0

# Sketch of proof (Thm. 1, large potentials)

Squaring  $\mathfrak{D}+V$  gives a system of Schrödinger operators

$$L := (\mathcal{D} + V)^2 = -I_4 \Delta_A - W - Z \cdot \partial$$

where

$$W = B - I_4 A_0^2 - \mathcal{D}\beta A_0 - \mathcal{D}V_0 - V_0^2 - V_0(\alpha \cdot A + \beta A_0) - (\alpha \cdot A + \beta A_0)V_0$$

and

$$Z_j = i(V_0 \alpha_j + \alpha_j V_0)$$

Here B represents the magnetic field:

$$B = i \sum_{j < k} B_{jk} \alpha_j \alpha_k, \qquad B_{jk} = \partial_j A_k - \partial_k B_j$$

## First step: resolvent estimate

We prove a resolvent estimate for

$$R(z) = (-L - z)^{-1}$$

of the form: for all  $z\in\mathbb{C}$  with  $|\Im z|<1$ ,

$$||R(z)f||_{\dot{X}} + |z|^{\frac{1}{2}} ||R(z)f||_{\dot{Y}} + ||\partial R(z)f||_{\dot{Y}} \le C||f||_{L^{2}_{\rho}}$$

Spaces:

$$||v||_{\dot{Y}}^{2} = \sup_{R>0} \frac{1}{R} \int_{|x|< R} |v|^{2} dx$$

$$||v||_{\dot{X}}^{2} = \sup_{R>0} \frac{1}{R^{2}} \int_{|x|=R} |v|^{2} dS$$

$$||v||_{L_{2}}^{2} = ||x|^{1/2} \rho^{-1} v||_{L^{2}}$$

 $\rho>0$  is a weight in  $\ell^2L^\infty$  (e.g.  $(1+|\log|x||)^{-\epsilon}$ ,  $\epsilon>1/2$ )

#### Large frequency regime $\Re z \gg 1$

We use a multiplier method which gives a sharp estimate, with explicit constants

Note that we are dealing with a system of Schrödinger equations, but with diagonal principal part

## Small frequency regime $|\Re z| \leq C$

For  $\Re z$  in any bounded region we use the Lippmann–Schwinger equation

$$R(z) = R_0(z)(I_4 - (W + Z \cdot \partial)R_0(z))^{-1}$$

where  $R_0$  is the free resolvent  $R_0(z) = I_4(-\Delta - z)^{-1}$ .

The operator

$$(W+Z\cdot\partial)R_0(z):L^2_\rho\to L^2_\rho$$

is compact and  $I_4-(W+Z\cdot\partial)R_0(z)$  can be inverted with a locally uniform bound on the inverse, via analytic Fredholm theory

A crucial step is proving that  $I_4 - (W + Z \cdot \partial)R_0(z)$  is injective, i.e., L has no embedded eigenvalues or resonances

For  $\Re z>0$  this follows by an application of Koch–Tataru o6 (Carleman estimates and absence of embedded eigenvalues)

For z=0 this is an explicit assumption

# Second step: Kato theory for WE

Kato 65: a uniform resolvent estimate

$$||AR(z)A^*f||_{\mathcal{H}} \lesssim ||f||_{\mathcal{H}} \tag{4}$$

is equivalent to a smoothing estimate

$$||Ae^{itL}f||_{L_t^2\mathcal{H}} \lesssim ||f||_{\mathcal{H}}$$

D. 2015: estimate (4) implies also the smoothing estimate for the wave flow

$$||Ae^{it\sqrt{L}}f||_{L_t^2\mathcal{H}} \lesssim ||L^{1/4}f||_{\mathcal{H}}$$

This is almost an estimate for  $e^{it(\mathcal{D}+V)}$  since  $\sqrt{L}\neq(\mathcal{D}+V)$ . Some more spectral theory gives the smoothing estimate

$$|||x|^{-1/2} \rho e^{it(\mathcal{D}+V)} f||_{L^2_t L^2_x} \lesssim ||f||_{L^2}, \qquad \rho \in \ell^2 L^\infty$$

# Third step: Strichartz/smooothing estimate

By a minor modification of a result of Cacciafesta–D. 13 we obtain the mixed endpoint Strichartz–smoothing estimate

$$\|\Lambda_{\omega}^{s} \int_{0}^{t} e^{i(t-t')\mathcal{D}} F dt'\|_{L_{t}^{2} L_{|x|}^{\infty} L_{\omega}^{2}} \lesssim \|\rho^{-1}|x|^{\frac{1}{2}} |D| \Lambda_{\omega}^{s} F\|_{L_{t}^{2} L^{2}}$$

Combining this with the smoothing estimate for  $e^{it(\mathcal{D}+V)}$  we get an endpoint Strichartz estimate for the perturbed flow

$$\|\Lambda_{\omega}^{s}e^{it(\mathcal{D}+V)}f\|_{L_{t}^{2}L^{\infty}L^{2}} + \|\Lambda_{\omega}^{s}e^{it(\mathcal{D}+V)}f\|_{L_{t}^{2}H^{1}} \lesssim \|\Lambda_{\omega}^{s}f\|_{H^{1}}$$

GWP and scattering for small data follow easily

# Sketch of proof (Thm. 2, large data)

Assume V(x) has the special structure

$$\begin{pmatrix} a & z & w & 0 \\ \overline{z} & b & 0 & w \\ \overline{w} & 0 & -b & z \\ 0 & \overline{w} & \overline{z} & -a \end{pmatrix} \quad \text{for some } a,b \in \mathbb{R} \text{ and } z,w \in \mathbb{C}$$

(i.e.,  $V(x) \in \mathcal{V}$  for all x)

Then the LM condition is preserved by the perturbed flow  $e^{it(\mathcal{D}+V)}$ 

Thus if the data  $\chi_0 \in L^2$  satisfy LM, the corresponding solution of the linear equation solves also the NLD:

$$\chi = e^{it(\mathfrak{D}+V)}\chi_0 \implies i\chi_t + (\mathfrak{D}+V)\chi = \langle \beta\chi, \chi \rangle \beta\chi \quad (\equiv 0)$$

If f are arbitrary data, the projection  $\chi_0=Pf$  on E satisfies LM and generates a global large reference solution  $\chi(t,x)$  of NLD with potential

Under the assumption

$$\|\Lambda_{\omega}^{s}(I-P)f\|_{H^{1}}\ll 1$$

i.e. f close enough to LM data, we prove that the corresponding solution u remains close to the reference solution  $\chi$  for all times

Since the reference solution  $\chi$  is large, we must split  $[0,+\infty)$  in a finite number of intervals

$$[0, +\infty) = [0, T_1] \cup [T_1, T_2] \cup \dots [T_{N-1}, T_N] \cup [T_N, +\infty)$$

such that the Strichartz norm of  $\chi$  is sufficiently small in each one, and then a continuation argument gives the result