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Framework

We consider a system of 2 electrons represented by a wave
function  : í3 ⇥í3 ! É16 and evolving according in the field of
one nucleus in position q(t) according to the energy :

E =
1
2

X

j=1,2

Z
h Dj , i+

1
2

Z
X

j=1,2

Z
h , 1

xj � q(t)
 i � 1

2

Z

í3⇥í3
|x1 � x2|�1h , i.

Dj = m� + i�!↵ · 5j : Dirac operator associated to the variable xj .
h·, ·i : either the canonical product on É4 ⌦ É4 or (·, � ⌦ �·).
In the sequel, we write  1 2 for h 1, 2i.
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Ansatz

Since the electrons are fermions, they satisfy Pauli’s principle,
which means

 (x1, x2) = � (x2, x1).

We take  to be equal to

 =
1p
2

(u1(x1) ⌦ u2(x2) � u1(x2) ⌦ u2(x1)

with ui : í3 ! É4 orthogonal and normalised (Slater determinant).
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Ansatz 2

We get the following energy :

E = Ekin + Epot + Emf + Eexch

with

Ekin =
1
2

X

j

Z
ujDuj

Epot =
Z
2

X

j

Z
uj |x � q(t)|�1uj

Emf = �1
2

Z ⇣
|x |�1 ⇤ |u1|2

⌘
|u2|2

Eexch = �1
2

Z ⇣
|x |�1 ⇤ (u1u2)

⌘
u2u1.
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A system of equations

i@t u1 = Du1 + Z |x � q(t)|�1u1 � |x |�1 ⇤ |u2|2u1 � |x |�1 ⇤ (u1u2)u2

i@t u2 = Du2 + Z |x � q(t)|�1u2 � |x |�1 ⇤ |u1|2u2 � |x |�1 ⇤ (u2u1)u1.

For the sake of simplicity, we solve

i@t u = Du + |x � q(t)|�1u + |x |�1 ⇤ |u|2u.

What is important is that the local (in time) analysis is not so much
affected (depending on the results we wish to prove).
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The equation on q

The nucleus, because it is heavy compared to the electrons, is
supposed to behave in a classical way. It is in the field of the
electrons, which means that it potential energy is

Epot ,n =
Z

u|x � q(t)|�1u

from which we get the coupling

Mq00(t) = � 5q

Z
u|x � q(t)|�1u = 3

Z
u

x � q(t)
|x � q(t)|3 u.
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Previous works

The non-relativistic equivalent of this equation :
(

i@t u = � 4 u + Z |x � q(t)|�1u + |x |�1 ⇤ |u|2u
Mq00(t) = � 5q

R
u|x � q(t)|�1u

was studied by Cancès and Lebris ’99, they prove global
well-posedness in C(í,H2) ⇥ C(í2). The GWP is based on energy
conservation and H2 estimates.

The linear problem i@t u = � 4 u + |x � q(t)|�1u with fixed q(t) was
studied by Kato and Yajima, ’91, in an ever more refined way, with
retarded time approximation (take q(s(t)) instead of q(t)).
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Result

Theorem [F.Cacciafesta, D. Noja, dS] We assume Z is small
enough. There exists C1 and C2 depending on Z , such that for all
R 2 í+ , all u0 2 H2 such that ku0kH1  R, and all q00 such that
|q00|  C1 , the above equation with initial data q(0) = 0, q0(0) = q00
and u(0) = u0 is well-posed in C([0,T ],H2(R3)) ⇥ C2([0,T ], for
T  1

C2R2 .

We remark that the equation scales with critical regularity sc = 0.
This means that we should get better results for the time of
existence. Nevertheless, the restriction on the regularity of the
initial datum is due to the coupling and it seems difficuly to lower it.
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Change of variables

We study i@t u = Du + Z |x � q(t)|�1u. With the change of variable
v(t) = I(t)u(t) = u(t , x + q(t)), we get

i@t v = Dv + Z |x |�1v + iq0(t) · 5v .

If Z and kq0kL1([0,T ]) are small enough then the operator
H(t) = D + Z |x |�1 + iq0(t) · 5 satisfies for all t 2 [0,T ]

1
C
kvkH1  kH(t)vkL2  CkvkH1 .
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Linear Analysis in L2

Theorem [Kato, ’52] Assume that for all time t 2 [0,T ], H(t) is a
continuous in time, L(H1, L2) essentially self-adjoint operator, then
the propagator U(t , s) of the equation i@t u = H(t)u exists and
belongs to C([0,T ],L(L2) and kU(t , s)kL2!L2  1.
What is more U(t , s) is the limit when N goes to 1 of

NY

k=1

ei(tk�tk�1)H(tk�1)

with t0 = s, h = t�s
N , tk = t0 + hk .
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Linear analysis in Hm

From the previous theorem, we know that the linear equation is
well-posed in L2 but we would like some more regularity. Assume
v 2 C([0,T ],Hm) and write w(t) = H(t)mv(t) for some positive
integer m. The fact that v solves i@t v = H(t)v is equivalent to the
fact that w solves

i@tw = H(t)w + i
X

k

H(t)k H0(t)H(t)1�k (t)w.

This means

w(t) = U(t , t0)w(t0) + i
Z t

t0
U(t , s)

X

k

H(s)k q00(s) ·5H(t)1�k (s)w(s)ds.

13 / 1



Linear Analysis in Hm

With kq00kL1([0,T ]) small enough, this is well posed in L2.

We get w(t) = V (t , s)w(s) with V 2 C([0,T ]2,L(L2)).

We have v(t) = H(t)�1V (t , s)H(s)v(s) with the propagator
H(t)�1V (t , s)H(s) in C([0,T ]2,L(Hm)).

And finally u(t) = I(t)�1H(t)�1V (t , s)H(s)I(s)u(s) with the
propagator Uq(t , s) in C([0,T ]2,L(Hm)).

14 / 1



Dependance on q

We have kHq1 (t) � Hq2 (t)kHm!Hm�1 . kq01 � q02kL1([0,T ] for all
t 2 [0,T ].
What is more, Iq(t)Uq(t , s)Iq(s)�1 is the limit of

NY

k=1

ei(tk�tk�1)Hq(tk�1)

Hence

kUq1 (t , s) � Uq2 (t , s)kHm!Hm�1  kq01 � q02kL1([0,T ]).
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Linear analysis- Result

Proposition [Cacciafesta, Noja, dS] Assuming that Z , kq0kL1 and
kq00kL1 are small enough, the propagator Uq of the equation
i@t u = Hq(t)u belongs to C([0,T ]2,Hm) for all m 2 é.
What is more, and under the same assumptions for q1 and q2 (with
q1(0) = q2(0) = 0), for m 2 é⇤, we have

kUq1 (t , s) � Uq2 (t , s)kHm!Hm�1  kq01 � q02kL1([0,T ]).
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Contraction in H2

Fixing q(t), the equation on u, is written

u(t) = Uq(t , t0)u0 � i
Z t

t0
Uq(t , s)|x |�1 ⇤ |u|2(s)u(s)ds.

Thanks to Hardy inequality, we have,

k|x |�1 ⇤ |u|2(s)u(s)kHj . ku(s)kHjkuk2H1

and

k|x |�1⇤|u|2(s)u(s)�|x |�1⇤|v |2(s)v(s)kH1 . ku(s)�v(s)kL2 (kuk2H1+kvk2H1 ).

This enables us to perform a contraction argument in H2, we get a
flow  q(t) which satifies for t 2 [0,T ⇠ 1

ku0k2H1
],

k( q1 (t) � q2 (t))u0kL1([0,T ],H1) . kq01 � q02kL1([0,T ])ku0kH2 .
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Contraction for q

We now proceed to a contraction argument on q. We solve the fix
point

Mq(t) = tq00 + 3
Z t

t0

Z ⌧

t0

Z
 q(s)u0(x � q(t))|x � q(s)|�3 q(s)u0dsd⌧.

We have

����
Z

( q1 (t)u0 � q2 (t)u0)(x � q1(t))|x � q1(t)|�3 q1 (t)u0

����

. k q1 (t)u0 � q2 (t)u0kH1k q1 (t)u0kH1 .
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Contraction for q, 2

For a fixed u, setting

F(q) =
Z

u|x � q|�3(x � q)u =
Z

uqx |x |�3uq

where uq(x) = u(x + q), we have

5F = 2Re
Z

(5u)qx |x |�3uq.

We get
| 5 F |  kukH2kukH1 .

For these reasons, one can proceed to a contraction argument for
times of order 1

ku0kH2 ku0kH1
.
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Schauder fix point

Assume A is a map from C1([0,T ]) to itself and that K is a compact
of C1([0,T ]) such that A (K ) ⇢ K . Then A admits a fix point in K .
Note that the fix point is not unique.
Take K (T ) = {q 2 C2([0,T ])|q(0) = 0, kq0kL1  C1,Tkq00kL1  C2}.
K (T ) is compact in C1([0,T ]). The map

A (q) = tq00 + 3
Z t

t0

Z ⌧

t0

Z
 q(s)u0(x � q(t))|x � q(s)|�3 q(s)u0dsd⌧

is continuous on K (T ) as long as u0 is in H2 but with no restriction
on the norm and

A (K (T )) ✓ K (T )

as long as T is of order 1
ku0k2H1

.
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Schauder fix point 2

There exists a fix point for the equation on q which enables us to
define u =  q(t)u0 for times of order 1

ku0k2H1
.

The uniqueness comes from the contraction on times of order
1

ku0kH1 ku0kH2
.
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Model

There is a model with multiple nuclei. In this case, the equation on
u remains the same except that the potential term is now

X

j

|x � qj(t)|�1u.

The equation on the different qs however must include the
interaction between the nuclei. Hence

Mq00j = �Zj 5qj

⇣ Z
u|x � qj(t)|�1u �

X

k,j

ZjZk |qj � qk |�1
⌘
.
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Linear Analysis

To deal with this new potential one has to introduce a change of
variable that depends of which nucleus one is close to :

�(t)x = x +
X

j

⌘(x � qj)qj(t)

where qj are the id for qj(t).
This complicate things a little bit because things that were
isometries like I(t) lose this property.
It also enforces to take qj(t) that are well separated : at all times
|qj(t) � qk (t)| � "0 > 0.
Write

H(t) = D +
X

j

|x � qj(t)|�1.
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Linear analysis, Result
Proposition [Cacciafesta, Noja, dS] Assume that for all times in
[0,T ], |qj(t) � qk (t)| � "0 > 0 and moreover that

NX

k=1

|Zk |  CZ"0

and
sup
k ,t
|q̇k (t)|  min(C1,C1

"0

T
), sup

k
kq̈k (t)kL1  C2,

for some suitably small positive constants C1, C2 and CZ . Then the
propagator of the equation

i@t u = H(t)u

is a family of operators Uq(t , s) with

Uq 2 C([0,T ]2,L(L2)) \ C([0,T ]2,L(H1)) \ C([0,T ]2,L(H2))

with norms uniformly bounded in q.
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Linear analysis, Result

What is more, if q(1) = (q(1)
1 , . . . , q

(1)
N ) and q(2) = (q(2)

1 , . . . , q
(2)
N ) are

two vectors of C2([0,T ]) satisfying the same assumptions as q, and
assuming that q(1)(0) = q(2)(0), then there exists CT such that for all
t , s 2 [0,T ]2, we have

kUq(1) � Uq(2)kHm!Lm�1 

CT sup
k ,t

T
|(q̇k

(1)) � (q̇k
(2))|

"0
+ CT sup

k ,t
|(q̇k

(1))(t) � (q̇k
(2))(t)|.
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Local well-posedness, Result

Theorem [Cacciafesta, Noja, dS] We assume
P

j Zj . "0. There
exists C1 and C2 depending on (Zj)j , such that for all R 2 í+ , all
u0 2 H2 such that ku0kH1  R, and all vectors q00 such that |q00|  C1

and q0 satisfying the well-separated assumption, the above
equation with initial data q(0) = q0, q0(0) = q00 and u(0) = u0 is

well-posed in C([0,T ],H2(í3)) ⇥ C2([0,T ], for T  "2
0

C2R2 .
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