
On the spectral properties of
Dirac operators with electrostatic

�-shell interactions
Markus Holzmann

Graz University of Technology
joint work with J. Behrndt, P. Exner, and V. Lotoreichik

Linear and Nonlinear Dirac Equation:
advances and open problems,

Como, February 10, 2017



Motivation

Object of interest:
A⌘ := A0 + ⌘�⌃

in L2(R3;C4), where
⌘ 2 R
A0 is the free Dirac operator
⌃ ⇢ R3 is the boundary of a bounded C2-smooth domain

Questions:
Rigorous mathematical definition of A⌘ as self-adjoint operator
Spectral properties of A⌘

Scattering theory for A⌘

Justification for the usage of A⌘
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Motivation for extension theory

A⌘ := A0 + ⌘�⌃,

Observations:
A⌘f (x) = A0f (x), if x /2 ⌃
�-shell interaction is modelled by jump condition at ⌃
Introduce A⌘ as self-adjoint extension of

S := A0 � H1
0 (R3 \ ⌃;C4)

Extension theoretical approaches:
Arrizabalaga, Mas, Vega, . . .

designed for application to the Dirac operator
Quasi boundary triples:

more abstract approach
successfully applied for Schrödinger operators with
�-interactions

Markus Holzmann,
Linear and Nonlinear Dirac Equation, Como3



Outline

1. Motivation

2. Quasi boundary triples, their Weyl functions and Dirac

3. Dirac operators with electrostatic �-shell interactions
– Dirac operators with �-interactions of strength ⌘ 6= ±2c
– Dirac operators with �-interactions of strength ⌘ = ±2c

4. Summary and outlook

Markus Holzmann,
Linear and Nonlinear Dirac Equation, Como4



Boundary triples – a bit of history

Ordinary boundary triples
abstract approach in extension theory for symmetric operators
introduced in the 1970s (Bruk, Kochubei)
far developed, used in many applications
some names: Behrndt, Cacciapuoti, de Snoo, Derkach, Geyler,
Malamud, Neidhardt, Pankrashkin, Posilicano, . . .

Quasi boundary triples
generalization of ordinary boundary triples
introduced by Behrndt and M. Langer in 2007 to study partial
differential operators with special boundary/interface conditions
there exist several similar concepts
some names: Behrndt, Hassi, M. Langer, Lotoreichik, Malamud,
Posilicano, Rohleder, . . .
related to approach of Arrizabalaga, Mas, and Vega
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Quasi boundary triples – definition

Definition
Assumptions:

H and G are Hilbert spaces

S is a closed symmetric operator in H
T is an operator such that T = S⇤

{G, �0, �1} is called a quasi boundary triple, if �0, �1 : dom T ! G
ran(�0, �1) is dense in G ⇥ G;

A0 := T � ker �0 is self-adjoint;

8f , g 2 dom T :

(Tf , g)H � (f ,Tg)H = (�1f , �0g)G � (�0f , �1g)G

Goal: construct quasi boundary triple for the Dirac operator
Markus Holzmann,
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The free Dirac operator

Define

A0f := �ic
3X

j=1

↵j@j f + mc2�f , dom A0 = H1(R3;C4)

m is the mass of the particle and c the speed of light
↵1,↵2,↵3 and � are the Dirac matrices

↵j :=

✓
0 �j
�j 0

◆
and � :=

✓
I2 0
0 �I2

◆
,

where �j are the Pauli spin matrices

�1 :=

✓
0 1
1 0

◆
, �2 :=

✓
0 �i
i 0

◆
, �3 :=

✓
1 0
0 �1

◆
.
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A quasi boundary triple for the Dirac operator

Let ⌦+ be a C2-smooth bdd. domain, ⌃ := @⌦+, ⌦� := R3 \ ⌦+

Notation: for f 2 L2(R3) we write f± = f |⌦±

Define S := A0 � H1
0 (R3 \ ⌃)

Then:

S⇤f = (�ic↵ ·r+ mc2�)f+ � (�ic↵ ·r+ mc2�)f�
dom S⇤ =

�
f = f+ � f� : (�ic↵ ·r+ mc2�)f± 2 L2(⌦±)

 

Introduce

Tf = (�ic↵ ·r+ mc2�)f+ � (�ic↵ ·r+ mc2�)f�
dom T = H1(R3 \ ⌃) := H1(⌦+)� H1(⌦�)

It holds T = S⇤
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A quasi boundary triple for the Dirac operator

Define for f = f+ � f� 2 H1(⌦+)� H1(⌦�)

�0f = ic↵ · ⌫(f+|⌃ � f�|⌃) and �1f =
1
2
(f+|⌃ + f�|⌃)

(⌫ is the outer unit normal vector field for ⌦+)
Note: �0f , �1f /2 L2(⌃) for f 2 dom S⇤

Theorem

S is closed and symmetric and {L2(⌃), �0, �1} is a quasi
boundary triple for T = S⇤ such that T � ker �0 is the free Dirac
operator A0.
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Proof:

Recall: for f = f+ � f� 2 H1(⌦+)� H1(⌦�)

�0f = ic↵ · ⌫(f+|⌃ � f�|⌃) and �1f =
1
2
(f+|⌃ + f�|⌃)

ran(�0, �1) = H1/2(⌃)⇥ H1/2(⌃) is dense in L2(⌃)⇥ L2(⌃)

ker �0 = H1(R3) ) T � ker �0 = A0

Integration by parts in ⌦±
�
(�ic↵ ·r+ mc2�)f±, g±

�
⌦±

��
f±, (�ic↵ ·r+ mc2�)g±

�
⌦±

= ±�� ic↵ · ⌫f±|⌃, g±|⌃
�
⌃

(Tf , g)R3 � �
f ,Tg

�
R3 = (�1f , �0g)⌃ � (�0f , �1g)⌃
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�-field and Weyl function

For � 2 ⇢(A0) it holds that

dom T = dom A0+̇ ker(T � �) = ker �0+̇ ker(T � �)

The mapping �0 � ker(T � �) is injective for � 2 ⇢(A0)

Definition
Define for � 2 ⇢(A0) the mappings

(i) �(�) := (�0 � ker(T � �))�1 . . . �-field
(ii) M(�) := �1�(�) = �1(�0 � ker(T � �))�1 . . . Weyl function

�(�) maps ' 2 ran �0 to a solution u� of (T � �)u� = 0,
�0u� = ' ) �(�) is a kind of Poisson operator
M(�) . . . abstract Dirichlet-to-Neumann map
�(�)⇤ = �1(A0 � �)�1
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�-field and Weyl function for our triple

Recall:
A0 = T � ker �0 is the free Dirac operator
�(A0) = (�1,�mc2] [ [mc2,1)

For � 2 ⇢(A0) it holds

(A0 � �)�1f (x) =
Z

R3
G�(x � y)f (y)dy , x 2 R3,

with a known function G�

G�(x)=
✓

�
c2 I+ m�+

✓
1� i

q
�2

c2 � (mc)2|x |
◆

i(↵·x)
c|x|2

◆
ei
p

�2/c2�(mc)2|x|

4⇡|x| .

It holds �(�)⇤ = �1(A0 � �)�1 : L2(R3) ! L2(⌃)
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�-field and Weyl function for our triple

Recall:
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It holds �(�)⇤ = �1(A0 � �)�1 : L2(R3) ! L2(⌃),

�(�)⇤f (x) :=
Z
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�-field and Weyl function for our triple

�(�)⇤ = �1(A0 � �)�1 : L2(R3) ! L2(⌃),

�(�)⇤f (x) :=
Z

R3
G�(x � y)f (y)dy , x 2 ⌃.

ran �0 = H1/2(⌃) (because �0f = ic↵ · ⌫(f+|⌃ � f�|⌃))
Proposition
Let � 2 ⇢(A0). Then:

(i) �(�) : H1/2(⌃) ! L2(R3),

�(�)'(x) :=
Z

⌃
G�(x � y)'(y)d�(y), x 2 R3.

(ii) M(�) : H1/2(⌃) ! L2(⌃),

M(�)'(x) = lim
"&0

Z

|x�y|>"
G�(x � y)'(y)d�(y), x 2 ⌃.
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�-field and Weyl function for our triple

Proposition
Let � 2 ⇢(A0). Then there exist continuous extensions

(i) �(�) : L2(⌃) ! L2(R3),

�(�)'(x) :=
Z

⌃
G�(x � y)'(y)d�(y), x 2 R3.

(ii) �(�)⇤ : L2(R3) ! L2(⌃),

�(�)⇤f (x) :=
Z

R3
G�(x � y)f (y)dy , x 2 ⌃.

(iii) M(�) : L2(⌃) ! L2(⌃),

M(�)'(x) = lim
"&0

Z

|x�y|>"
G�(x � y)'(y)d�(y), x 2 ⌃.
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Krein-type resolvent formula

Let ⇥ : G ! G be a symmetric operator
Define A⇥ := T � ker(⇥�0 � �1)

Green’s identity: A⇥ is symmetric

Theorem (Behrndt, M. Langer 2007)
Let � 2 ⇢(A0).

(i) � 2 �p(A⇥) , 0 2 �p(⇥� M(�));
(ii) If � /2 �p(A⇥), then f 2 ran(A⇥ � �) , �(�)⇤f 2 ran(⇥� M(�));
(iii) If � /2 �p(A⇥), then for f 2 ran(A⇥ � �)

(A⇥ � �)�1f = (A0 � �)�1f + �(�)
�
⇥� M(�)

��1
�(�)⇤f ;

(iv) If � /2 �p(A⇥) and ran �(�)⇤ ⇢ ran(⇥� M(�)), then � 2 ⇢(A⇥).
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Dirac operators with �-shell interactions

Recall:

Tf = (�ic↵ ·r+ mc2�)f+ � (�ic↵ ·r+ mc2�)f�
dom T = H1(R3 \ ⌃) := H1(⌦+)� H1(⌦�),

�0f = ic↵·⌫(f+|⌃�f�|⌃) and �1f =
1
2
(f+|⌃+f�|⌃), f 2 dom T

Definition
For ⌘ 2 R \ {0} define

A⌘ := T � ker
�� 1

⌘�0 � �1
�
,

dom A⌘ =
�

f 2 dom T : ic↵ · ⌫(f+|⌃ � f�|⌃) = �⌘
2(f+|⌃ + f�|⌃)

 
.

Observe: ⇥ = �1
⌘
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Case ⌘ 6= ±2c: Basic results

Theorem (Vega et al.; Behrndt, Exner, H., Lotoreichik)
Let ⌘ 6= ±2c. Then:

(i) A⌘ = A⇤
⌘ and for � 2 C \ R

(A⌘ � �)�1 = (A0 � �)�1 � �(�)
�
I + ⌘M(�)

��1
⌘�(�)⇤;

(ii) dom A⌘ ⇢ H1(⌦+)� H1(⌦�);
(iii) �ess(A⌘) = �ess(A0) = (�1,�mc2] [ [mc2,1).
(iv) �(A⌘) \ (�mc2,mc2) is finite;
(v) �(A⌘) \ (�mc2,mc2) = ; for |⌘| too big or too small.
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Sketch of the proof

Ad (i)
We show ran(A⌘ � �) = L2(R3) for � 2 C \ R
f 2 ran(A⌘ � �) , �(�)⇤f 2 ran(� 1

⌘ I � M(�))

ran(� 1
⌘ I � M(�)) � ran

⇥
(� 1

⌘ I � M(�))( 1
⌘ I � M(�))

⇤

= ran
� 1
⌘2 I � M(�)2�

M(�)2 = 1
4c2 I + K (�) with K (�) compact in H1/2(⌃)

Fredholm:

ran(� 1
⌘ I � M(�)) � ran

�� 1
⌘2 � 1

4c2

�
I � K (�)

�
= H1/2(⌃)

ran �(�)⇤ = H1/2(⌃) ⇢ ran(� 1
⌘ I � M(�)) for � 2 C \ R

(iv) � 2 �p(A⌘) , 0 2 �p
�� 1

⌘ I � M(�)
�

+ properties of M(�)
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The nonrelativistic limit

Theorem (Behrndt, Exner, H., Lotoreichik)
Let ⌘ 2 R and � 2 C \ R. Then,

lim
c!1

�
A⌘ � (�+ mc2)

��1
=

�� 1
2m�+ ⌘�⌃ � �

��1
✓

I2 0
0 0

◆
,

in the operator norm.

Discussion:
Justification for the usage of A⌘;
Convergence in norm resolvent sense: �(A⌘) and
�
�� 1

2m�+ ⌘�⌃ + mc2� are approximately the same for large c.

(A⌘ � (�+ mc2))�1 = (A0 � (�+ mc2))�1

� �(�+ mc2)
�
I + ⌘M(�+ mc2)

��1
⌘�(�+ mc2)⇤;
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The nonrelativistic limit

Theorem (Behrndt, Exner, H., Lotoreichik)
Let ⌘ 2 R and � 2 C \ R. Then,

lim
c!1

�
A⌘ � (�+ mc2)

��1
=

�� 1
2m�+ ⌘�⌃ � �

��1
✓

I2 0
0 0

◆
,

in the operator norm.

Sketch of the proof:
Krein’s resolvent formula:

(A⌘ � (�+ mc2))�1 = (A0 � (�+ mc2))�1

� �(�+ mc2)
�
I + ⌘M(�+ mc2)

��1
⌘�(�+ mc2)⇤;

Compute the limits of (A0 � (�+ mc2))�1, �(�+ mc2),
M(�+ mc2) and �(�+ mc2)⇤, as c ! 1.
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Case ⌘ = ±2c: Essential self-adjointness

Theorem (Behrndt, H.; Ourmieres-Bonafos, Vega)
A±2c is essentially self-adjoint.

Sketch of the proof (for ⌘ = 2c):
We show that ran(A2c � �) is dense in L2(R3) for � 2 C \ R
f 2 ran(A2c � �) , �(�)⇤f 2 ran(� 1

2c I � M(�))

ran �(�)⇤ = ran
�
�1(A0 � �)�1� = H1/2(⌃)

As before

ran(� 1
2c I � M(�)) � ran

� 1
4c2 I � 1

4c2 I � K (�)
�
= ran K (�)

K (�) is compact in H1/2(⌃), injective and has dense range
in H1/2(⌃)
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Case ⌘ = ±2c: Self-adjoint realization

We know: A±2c = T � ker
�⌥ 1

2c�0 � �1
�

is essentially self-adjoint

In general: A±2c 6⇢ T
Define A±2c as restriction of S⇤ = T ,

S⇤f = (�ic↵ ·r+ mc2�)f+ � (�ic↵ ·r+ mc2�)f�
dom S⇤ =

�
f = f+ � f� : (�ic↵ ·r+ mc2�)f± 2 L2(⌦±)

 

Theorem (Behrndt, H.; Ourmieres-Bonafos, Vega)

A±2c = S⇤ � ker
�e�0 ± 2ce�1

�
, i.e.

dom S⇤ 3 f 2 dom A±2c , ⌥ 1
2c

e�0f = e�1f in H�1/2(⌃)
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Case ⌘ = ±2c: Self-adjoint realization

We know: A±2c = T � ker
�⌥ 1
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�

is essentially self-adjoint

In general: A±2c 6⇢ T
Define A±2c as restriction of S⇤ = T ,

Proposition (Behrndt, Micheler 2014)
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�
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Properties of A±2c

Recall: A±2c = S⇤ � ker
�⌥ 1

2c
e�0 � e�1

�

Proposition (Behrndt, Micheler 2014)
Let � 2 ⇢(A0). Then, �(�) and M(�) have continuous
extensions

e�(�) : H�1/2(⌃) ! L2(R3),

eM(�) : H�1/2(⌃) ! H�1/2(⌃).

Theorem (Behrndt, H. 2017)

(i) dom A±2c 6⇢ H1(R3 \ ⌃);
(ii) (�1,�mc2] [ [mc2,1) ⇢ �(A±2c);
(iii) For � 2 C \ R it holds

�
A±2c � �

��1
= (A0 � �)�1 � e�(�)

�
I + ⌘ eM(�)

��1
⌘�(�)⇤.

Markus Holzmann,
Linear and Nonlinear Dirac Equation, Como22



Summary and outlook

Summary:
Quasi boundary triples are a suitable tool to investigate Dirac
operators with singular interactions
Dirac operators with electrostatic �-shell interactions of strength
⌘ 6= ±2c:

Self-adjointness and resolvent formula
�d (A⌘) is finite
The nonrelativistic limit is � 1

2m�+ ⌘�⌃

Self-adjointness and resolvent formula for Dirac operators with
electrostatic �-shell interactions of strength ⌘ = ±2c

Outlook:
Spectral properties of A±2c in the gap
More general interaction strengths
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Thank you for your attention!
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