On the spectral properties of Dirac operators with electrostatic δ -shell interactions

Markus Holzmann

Graz University of Technology joint work with J. Behrndt, P. Exner, and V. Lotoreichik

Linear and Nonlinear Dirac Equation: advances and open problems, Como, February 10, 2017

Motivation

Object of interest:

$$A_{\eta} := A_0 + \eta \delta_{\Sigma}$$

in $L^2(\mathbb{R}^3; \mathbb{C}^4)$, where

- $\eta \in \mathbb{R}$
- A₀ is the free Dirac operator
- $\Sigma \subset \mathbb{R}^3$ is the boundary of a bounded C^2 -smooth domain

Questions:

- Rigorous mathematical definition of A_{η} as self-adjoint operator
- Spectral properties of A_η
- Scattering theory for A_{η}
- Justification for the usage of A_{η}

Motivation for extension theory

$$\mathbf{A}_{\eta} := \mathbf{A}_{0} + \eta \delta_{\Sigma},$$

Observations:

- $A_n f(x) = A_0 f(x)$, if $x \notin \Sigma$
- δ -shell interaction is modelled by jump condition at Σ
- Introduce A_{η} as self-adjoint extension of

$$S := A_0 \upharpoonright H_0^1(\mathbb{R}^3 \setminus \Sigma; \mathbb{C}^4)$$

Extension theoretical approaches:

- Arrizabalaga, Mas, Vega, . . .
 - designed for application to the Dirac operator
- Quasi boundary triples:
 - more abstract approach
 - successfully applied for Schrödinger operators with δ-interactions

Outline

- 1. Motivation
- 2. Quasi boundary triples, their Weyl functions and Dirac
- 3. Dirac operators with electrostatic δ -shell interactions
 - Dirac operators with δ-interactions of strength η ≠ ±2c
 - Dirac operators with δ -interactions of strength $\eta=\pm 2c$
- 4. Summary and outlook

Boundary triples – a bit of history

Ordinary boundary triples

- abstract approach in extension theory for symmetric operators
- introduced in the 1970s (Bruk, Kochubei)
- far developed, used in many applications
- some names: Behrndt, Cacciapuoti, de Snoo, Derkach, Geyler, Malamud, Neidhardt, Pankrashkin, Posilicano, ...

Quasi boundary triples

- generalization of ordinary boundary triples
- introduced by Behrndt and M. Langer in 2007 to study partial differential operators with special boundary/interface conditions
- there exist several similar concepts
- some names: Behrndt, Hassi, M. Langer, Lotoreichik, Malamud, Posilicano, Rohleder, . . .
- related to approach of Arrizabalaga, Mas, and Vega

Quasi boundary triples - definition

Definition

Assumptions:

- \mathcal{H} and \mathcal{G} are Hilbert spaces
- S is a closed symmetric operator in $\mathcal H$
- T is an operator such that $\overline{T} = S^*$

$$\{\mathcal{G}, \Gamma_0, \Gamma_1\}$$
 is called a quasi boundary triple, if $\Gamma_0, \Gamma_1 : \text{dom } T \to \mathcal{G}$

- $ran(\Gamma_0, \Gamma_1)$ is dense in $\mathcal{G} \times \mathcal{G}$;
- $A_0 := T \upharpoonright \ker \Gamma_0$ is self-adjoint;
- $\forall f, g \in \text{dom } T$:

$$(Tf,g)_{\mathcal{H}}-(f,Tg)_{\mathcal{H}}=(\Gamma_1f,\Gamma_0g)_{\mathcal{G}}-(\Gamma_0f,\Gamma_1g)_{\mathcal{G}}$$

Goal: construct quasi boundary triple for the Dirac operator

The free Dirac operator

Define

$$A_0f := -ic\sum_{j=1}^3 lpha_j \partial_j f + mc^2 eta f, \quad \operatorname{dom} A_0 = H^1(\mathbb{R}^3; \mathbb{C}^4)$$

- m is the mass of the particle and c the speed of light
- $\alpha_1, \alpha_2, \alpha_3$ and β are the Dirac matrices

$$\alpha_j := \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix} \quad \text{and} \quad \beta := \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix},$$

where σ_i are the Pauli spin matrices

$$\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

A quasi boundary triple for the Dirac operator

- Let Ω_+ be a C^2 -smooth bdd. domain, $\Sigma := \partial \Omega_+$, $\Omega_- := \mathbb{R}^3 \setminus \overline{\Omega_+}$
- Notation: for $f \in L^2(\mathbb{R}^3)$ we write $f_{\pm} = f|_{\Omega_+}$
- Define $S := A_0 \upharpoonright H_0^1(\mathbb{R}^3 \setminus \Sigma)$
- Then:

$$S^*f = (-ic\alpha \cdot \nabla + mc^2\beta)f_+ \oplus (-ic\alpha \cdot \nabla + mc^2\beta)f_-$$

$$dom S^* = \left\{f = f_+ \oplus f_- : (-ic\alpha \cdot \nabla + mc^2\beta)f_\pm \in L^2(\Omega_\pm)\right\}$$

Introduce

$$\begin{split} \textit{Tf} &= (-\textit{ic}\alpha \cdot \nabla + \textit{mc}^2\beta)\textit{f}_+ \oplus (-\textit{ic}\alpha \cdot \nabla + \textit{mc}^2\beta)\textit{f}_- \\ \textit{dom } \textit{T} &= \textit{H}^1(\mathbb{R}^3 \setminus \Sigma) := \textit{H}^1(\Omega_+) \oplus \textit{H}^1(\Omega_-) \end{split}$$

• It holds $\overline{T} = S^*$

A quasi boundary triple for the Dirac operator

• Define for $f = f_+ \oplus f_- \in H^1(\Omega_+) \oplus H^1(\Omega_-)$

$$\Gamma_0 f = \textit{ic}\alpha \cdot \nu (f_+|_{\Sigma} - f_-|_{\Sigma}) \quad \text{and} \quad \Gamma_1 f = \frac{1}{2} (f_+|_{\Sigma} + f_-|_{\Sigma})$$

(ν is the outer unit normal vector field for Ω_+)

• Note: $\Gamma_0 f$, $\Gamma_1 f \notin L^2(\Sigma)$ for $f \in \text{dom } S^*$

Theorem

S is closed and symmetric and $\{L^2(\Sigma), \Gamma_0, \Gamma_1\}$ is a quasi boundary triple for $\overline{T} = S^*$ such that $T \upharpoonright \ker \Gamma_0$ is the free Dirac operator A_0 .

Proof:

■ Recall: for $f = f_+ \oplus f_- \in H^1(\Omega_+) \oplus H^1(\Omega_-)$

$$\Gamma_0 f = \textit{ic}\alpha \cdot \nu \big(f_+|_{\Sigma} - f_-|_{\Sigma}\big) \quad \text{and} \quad \Gamma_1 f = \frac{1}{2} \big(f_+|_{\Sigma} + f_-|_{\Sigma}\big)$$

- $\operatorname{ran}(\Gamma_0, \Gamma_1) = H^{1/2}(\Sigma) \times H^{1/2}(\Sigma)$ is dense in $L^2(\Sigma) \times L^2(\Sigma)$
- $\ker \Gamma_0 = H^1(\mathbb{R}^3) \Rightarrow T \upharpoonright \ker \Gamma_0 = A_0$
- Integration by parts in Ω_±

$$\begin{aligned} \left((-\textit{ic}\alpha \cdot \nabla + \textit{mc}^2\beta)\textit{f}_{\pm}, \textit{g}_{\pm} \right)_{\Omega_{\pm}} - \left(\textit{f}_{\pm}, (-\textit{ic}\alpha \cdot \nabla + \textit{mc}^2\beta)\textit{g}_{\pm} \right)_{\Omega_{\pm}} \\ &= \pm \left(-\textit{ic}\alpha \cdot \nu \textit{f}_{\pm}|_{\Sigma}, \textit{g}_{\pm}|_{\Sigma} \right)_{\Sigma} \end{aligned}$$

$$(Tf,g)_{\mathbb{R}^3}-(f,Tg)_{\mathbb{R}^3}=(\Gamma_1f,\Gamma_0g)_{\Sigma}-(\Gamma_0f,\Gamma_1g)_{\Sigma}$$

γ -field and Weyl function

• For $\lambda \in \rho(A_0)$ it holds that

$$\operatorname{dom} T = \operatorname{dom} A_0 \dot{+} \ker(T - \lambda) = \ker \Gamma_0 \dot{+} \ker(T - \lambda)$$

■ The mapping $\Gamma_0 \upharpoonright \ker(T - \lambda)$ is injective for $\lambda \in \rho(A_0)$

Definition

Define for $\lambda \in \rho(A_0)$ the mappings

- (i) $\gamma(\lambda) := (\Gamma_0 \upharpoonright \ker(T \lambda))^{-1} \dots \gamma$ -field
- (ii) $M(\lambda) := \Gamma_1 \gamma(\lambda) = \Gamma_1(\Gamma_0 \upharpoonright \ker(T \lambda))^{-1} \dots$ Weyl function
 - $\gamma(\lambda)$ maps $\varphi \in \operatorname{ran} \Gamma_0$ to a solution u_λ of $(T \lambda)u_\lambda = 0$, $\Gamma_0 u_\lambda = \varphi \Rightarrow \gamma(\lambda)$ is a kind of Poisson operator
 - $M(\lambda)$... abstract Dirichlet-to-Neumann map

Recall:

- $A_0 = T \upharpoonright \ker \Gamma_0$ is the free Dirac operator
- $\sigma(A_0) = (-\infty, -mc^2] \cup [mc^2, \infty)$
- For $\lambda \in \rho(A_0)$ it holds

$$(A_0-\lambda)^{-1}f(x)=\int_{\mathbb{R}^3}G_\lambda(x-y)f(y)dy,\quad x\in\mathbb{R}^3,$$

with a known function G_{λ}

$$G_{\lambda}(x) = \left(\frac{\lambda}{c^2}I + m\beta + \left(1 - i\sqrt{\frac{\lambda^2}{c^2} - (mc)^2}|x|\right)\frac{i(\alpha \cdot x)}{c|x|^2}\right)\frac{e^{i\sqrt{\lambda^2/c^2 - (mc)^2}|x|}}{4\pi|x|}.$$

Recall:

- $A_0 = T \upharpoonright \ker \Gamma_0$ is the free Dirac operator
- $\sigma(A_0) = (-\infty, -mc^2] \cup [mc^2, \infty)$
- For $\lambda \in \rho(A_0)$ it holds

$$(A_0-\lambda)^{-1}f(x)=\int_{\mathbb{R}^3}G_\lambda(x-y)f(y)dy,\quad x\in\mathbb{R}^3,$$

with a known function G_{λ}

It holds $\gamma(\lambda)^* = \Gamma_1(A_0 - \overline{\lambda})^{-1} : L^2(\mathbb{R}^3) \to L^2(\Sigma)$,

$$\gamma(\lambda)^* f(x) := \int_{\mathbb{R}^3} G_{\overline{\lambda}}(x-y) f(y) dy, \qquad x \in \Sigma$$

$$\gamma(\lambda)^* = \Gamma_1(A_0 - \overline{\lambda})^{-1} : L^2(\mathbb{R}^3) \to L^2(\Sigma),$$

$$\gamma(\lambda)^* f(x) := \int_{\mathbb{R}^3} G_{\overline{\lambda}}(x - y) f(y) dy, \qquad x \in \Sigma.$$

• ran $\Gamma_0 = H^{1/2}(\Sigma)$ (because $\Gamma_0 f = ic\alpha \cdot \nu (f_+|_{\Sigma} - f_-|_{\Sigma})$)

Proposition

Let $\lambda \in \rho(A_0)$. Then:

(i)
$$\gamma(\lambda): H^{1/2}(\Sigma) \to L^2(\mathbb{R}^3),$$

$$\gamma(\lambda)\varphi(x) := \int_{\Sigma} G_{\lambda}(x-y)\varphi(y)d\sigma(y), \qquad x \in \mathbb{R}^3.$$

$$\begin{split} \text{(ii)} \quad & M(\lambda): H^{1/2}(\Sigma) \to L^2(\Sigma), \\ & M(\lambda)\varphi(x) = \lim_{\varepsilon \searrow 0} \int_{|x-y|>\varepsilon} G_\lambda(x-y)\varphi(y) \mathrm{d}\sigma(y), \quad x \in \Sigma. \end{split}$$

Proposition

Let $\lambda \in \rho(A_0)$. Then there exist continuous extensions

$$\begin{split} \text{(i)} \ \ \overline{\gamma(\lambda)} : L^2(\Sigma) &\to L^2(\mathbb{R}^3), \\ \overline{\gamma(\lambda)} \varphi(x) := \int_{\Sigma} G_{\lambda}(x-y) \varphi(y) \mathrm{d}\sigma(y), \qquad x \in \mathbb{R}^3. \end{split}$$

$$\begin{split} \text{(ii)} \ \ & \gamma(\lambda)^* : L^2(\mathbb{R}^3) \to L^2(\Sigma), \\ & \gamma(\lambda)^* f(x) := \int_{\mathbb{R}^3} \textit{G}_{\overline{\lambda}}(x-y) f(y) \mathrm{d}y, \qquad x \in \Sigma. \end{split}$$

$$\begin{array}{ll} \text{(iii)} & \overline{M(\lambda)}: L^2(\Sigma) \to L^2(\Sigma), \\ & \overline{M(\lambda)}\varphi(x) = \lim_{\varepsilon \searrow 0} \int_{|x-y|>\varepsilon} G_{\lambda}(x-y)\varphi(y) \mathrm{d}\sigma(y), \quad x \in \Sigma. \end{array}$$

Krein-type resolvent formula

- Let $\Theta : \mathcal{G} \to \mathcal{G}$ be a symmetric operator
- Define $A_{\Theta} := T \upharpoonright \ker(\Theta\Gamma_0 \Gamma_1)$
- Green's identity: A_Θ is symmetric

Theorem (Behrndt, M. Langer 2007)

Let $\lambda \in \rho(A_0)$.

- (i) $\lambda \in \sigma_p(A_{\Theta}) \Leftrightarrow 0 \in \sigma_p(\Theta M(\lambda));$
- (ii) If $\lambda \notin \sigma_p(A_{\Theta})$, then $f \in \text{ran}(A_{\Theta} \lambda) \Leftrightarrow \gamma(\overline{\lambda})^* f \in \text{ran}(\Theta M(\lambda))$;
- (iii) If $\lambda \notin \sigma_p(A_{\Theta})$, then for $f \in ran(A_{\Theta} \lambda)$

$$(A_{\Theta} - \lambda)^{-1} f = (A_0 - \lambda)^{-1} f + \gamma(\lambda) (\Theta - M(\lambda))^{-1} \gamma(\overline{\lambda})^* f;$$

Krein-type resolvent formula

- Let $\Theta : \mathcal{G} \to \mathcal{G}$ be a symmetric operator
- Define $A_{\Theta} := T \upharpoonright \ker(\Theta\Gamma_0 \Gamma_1)$
- Green's identity: A_Θ is symmetric

Theorem (Behrndt, M. Langer 2007)

Let $\lambda \in \rho(A_0)$.

- (i) $\lambda \in \sigma_p(A_{\Theta}) \Leftrightarrow 0 \in \sigma_p(\Theta M(\lambda));$
- (ii) If $\lambda \notin \sigma_p(A_{\Theta})$, then $f \in \text{ran}(A_{\Theta} \lambda) \Leftrightarrow \gamma(\overline{\lambda})^* f \in \text{ran}(\Theta M(\lambda))$;
- (iii) If $\lambda \notin \sigma_p(A_{\Theta})$, then for $f \in ran(A_{\Theta} \lambda)$

$$(A_{\Theta} - \lambda)^{-1} f = (A_0 - \lambda)^{-1} f + \overline{\gamma(\lambda)} (\Theta - \overline{M(\lambda)})^{-1} \gamma(\overline{\lambda})^* f;$$

(iv) If $\lambda \notin \sigma_p(A_{\Theta})$ and ran $\gamma(\overline{\lambda})^* \subset \operatorname{ran}(\Theta - M(\lambda))$, then $\lambda \in \rho(A_{\Theta})$.

Dirac operators with δ -shell interactions

Recall:

$$\begin{split} &\textit{Tf} = (-\textit{ic}\alpha \cdot \nabla + \textit{mc}^2\beta)\textit{f}_+ \oplus (-\textit{ic}\alpha \cdot \nabla + \textit{mc}^2\beta)\textit{f}_- \\ &\text{dom } \textit{T} = \textit{H}^1(\mathbb{R}^3 \setminus \Sigma) := \textit{H}^1(\Omega_+) \oplus \textit{H}^1(\Omega_-), \end{split}$$

$$\Gamma_0 f = i c \alpha \cdot \nu (f_+|_{\Sigma} - f_-|_{\Sigma})$$
 and $\Gamma_1 f = \frac{1}{2} (f_+|_{\Sigma} + f_-|_{\Sigma}), f \in \text{dom } T$

Definition

For $\eta \in \mathbb{R} \setminus \{0\}$ define

$$\begin{split} A_{\eta} &:= T \upharpoonright \ker \big(- \tfrac{1}{\eta} \Gamma_0 - \Gamma_1 \big), \\ \operatorname{dom} A_{\eta} &= \big\{ f \in \operatorname{dom} T : \mathit{ic} \alpha \cdot \nu (f_+|_{\Sigma} - f_-|_{\Sigma}) = - \tfrac{\eta}{2} (f_+|_{\Sigma} + f_-|_{\Sigma}) \big\} \,. \end{split}$$

Observe: $\Theta = -\frac{1}{\eta}$

Case $\eta \neq \pm 2c$: Basic results

Theorem (Vega et al.; Behrndt, Exner, H., Lotoreichik)

Let $\eta \neq \pm 2c$. Then:

(i)
$$A_{\eta} = A_{\eta}^*$$
 and for $\lambda \in \mathbb{C} \setminus \mathbb{R}$

$$(A_{\eta} - \lambda)^{-1} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (I + \eta M(\lambda))^{-1} \eta \gamma(\overline{\lambda})^*;$$

- (ii) dom $A_{\eta} \subset H^1(\Omega_+) \oplus H^1(\Omega_-)$;
- (iii) $\sigma_{ess}(A_{\eta}) = \sigma_{ess}(A_0) = (-\infty, -mc^2] \cup [mc^2, \infty).$
- (iv) $\sigma(A_{\eta}) \cap (-mc^2, mc^2)$ is finite;
- (v) $\sigma(A_{\eta}) \cap (-mc^2, mc^2) = \emptyset$ for $|\eta|$ too big or too small.

Sketch of the proof

Ad (i)

- We show $\operatorname{ran}(A_{\eta} \lambda) = L^2(\mathbb{R}^3)$ for $\lambda \in \mathbb{C} \setminus \mathbb{R}$
- $f \in \operatorname{ran}(A_{\eta} \lambda) \Leftrightarrow \gamma(\overline{\lambda}) * f \in \operatorname{ran}(-\frac{1}{\eta}I M(\lambda))$

ı

$$\operatorname{ran}(-\frac{1}{\eta}I - M(\lambda)) \supset \operatorname{ran}\left[(-\frac{1}{\eta}I - M(\lambda))(\frac{1}{\eta}I - M(\lambda))\right] \\
= \operatorname{ran}\left(\frac{1}{\eta^2}I - M(\lambda)^2\right)$$

- $M(\lambda)^2 = \frac{1}{4c^2}I + K(\lambda)$ with $K(\lambda)$ compact in $H^{1/2}(\Sigma)$
- Fredholm:

$$\text{ran}(-\tfrac{1}{\eta}I-M(\lambda))\supset\text{ran}\left(\left(\tfrac{1}{\eta^2}-\tfrac{1}{4c^2}\right)I-K(\lambda)\right)=H^{1/2}(\Sigma)$$

■ ran
$$\gamma(\overline{\lambda})^* = H^{1/2}(\Sigma) \subset \operatorname{ran}(-\frac{1}{\eta}I - M(\lambda))$$
 for $\lambda \in \mathbb{C} \setminus \mathbb{R}$
(iv) $\lambda \in \sigma_p(A_\eta) \Leftrightarrow 0 \in \sigma_p(-\frac{1}{\eta}I - M(\lambda)) + \text{properties of } M(\lambda)$

The nonrelativistic limit

Theorem (Behrndt, Exner, H., Lotoreichik)

Let $\eta \in \mathbb{R}$ and $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Then,

$$\lim_{c\to\infty} \left(A_{\eta} - (\lambda + mc^2)\right)^{-1} = \left(-\frac{1}{2m}\Delta + \eta\delta_{\Sigma} - \lambda\right)^{-1} \begin{pmatrix} I_2 & 0\\ 0 & 0 \end{pmatrix},$$

in the operator norm.

Discussion:

- Justification for the usage of A_{η} ;
- Convergence in norm resolvent sense: $\sigma(A_{\eta})$ and $\sigma(-\frac{1}{2m}\Delta + \eta\delta_{\Sigma} + mc^2)$ are approximately the same for large c.

The nonrelativistic limit

Theorem (Behrndt, Exner, H., Lotoreichik)

Let $\eta \in \mathbb{R}$ and $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Then,

$$\lim_{c\to\infty} \left(A_{\eta} - (\lambda + mc^2)\right)^{-1} = \left(-\frac{1}{2m}\Delta + \eta\delta_{\Sigma} - \lambda\right)^{-1} \begin{pmatrix} I_2 & 0\\ 0 & 0 \end{pmatrix},$$

in the operator norm.

Sketch of the proof:

Krein's resolvent formula:

$$(A_{\eta}-(\lambda+mc^2))^{-1}=(A_0-(\lambda+mc^2))^{-1} \ -\overline{\gamma(\lambda+mc^2)}(I+\eta\overline{M(\lambda+mc^2)})^{-1}\eta\gamma(\overline{\lambda}+mc^2)^*;$$

• Compute the limits of $(A_0 - (\lambda + mc^2))^{-1}$, $\overline{\gamma(\lambda + mc^2)}$, $\overline{M(\lambda + mc^2)}$ and $\gamma(\overline{\lambda} + mc^2)^*$, as $c \to \infty$.

Case $\eta = \pm 2c$: Essential self-adjointness

Theorem (Behrndt, H.; Ourmieres-Bonafos, Vega)

 $A_{\pm 2c}$ is essentially self-adjoint.

Sketch of the proof (for $\eta = 2c$):

- We show that $ran(A_{2c} \lambda)$ is dense in $L^2(\mathbb{R}^3)$ for $\lambda \in \mathbb{C} \setminus \mathbb{R}$
- $f \in \operatorname{ran}(A_{2c} \lambda) \Leftrightarrow \gamma(\overline{\lambda})^* f \in \operatorname{ran}(-\frac{1}{2c}I M(\lambda))$
- ran $\gamma(\overline{\lambda})^*$ = ran $(\Gamma_1(A_0 \lambda)^{-1}) = H^{1/2}(\Sigma)$
- As before

$$\operatorname{ran}(-\tfrac{1}{2c}I-M(\lambda))\supset\operatorname{ran}\left(\tfrac{1}{4c^2}I-\tfrac{1}{4c^2}I-K(\lambda)\right)=\operatorname{ran}K(\lambda)$$

• $K(\lambda)$ is compact in $H^{1/2}(\Sigma)$, injective and has dense range in $H^{1/2}(\Sigma)$

Case $\eta = \pm 2c$: Self-adjoint realization

- We know: $A_{\pm 2c} = T \upharpoonright \ker \left(\mp \frac{1}{2c} \Gamma_0 \Gamma_1 \right)$ is essentially self-adjoint
- In general: $\overline{A_{\pm 2c}} \not\subset T$
- Define $\overline{A_{\pm 2c}}$ as restriction of $S^* = \overline{T}$,

$$S^*f = (-ic\alpha \cdot \nabla + mc^2\beta)f_+ \oplus (-ic\alpha \cdot \nabla + mc^2\beta)f_-$$

dom $S^* = \left\{f = f_+ \oplus f_- : (-ic\alpha \cdot \nabla + mc^2\beta)f_\pm \in L^2(\Omega_\pm)\right\}$

Case $\eta = \pm 2c$: Self-adjoint realization

- We know: $A_{\pm 2c} = T \upharpoonright \ker \left(\mp \frac{1}{2c}\Gamma_0 \Gamma_1\right)$ is essentially self-adjoint
- In general: $\overline{A_{\pm 2c}} \not\subset T$
- Define $\overline{A_{\pm 2c}}$ as restriction of $S^* = \overline{T}$,

Proposition (Behrndt, Micheler 2014)

 Γ_0, Γ_1 : dom $T \to L^2(\Sigma)$ have surjective extensions $\widetilde{\Gamma}_0, \widetilde{\Gamma}_1$: dom $S^* \to H^{-1/2}(\Sigma)$

Theorem (Behrndt, H.; Ourmieres-Bonafos, Vega)

$$\overline{\textit{A}_{\pm 2\textit{c}}} = \textit{S}^* \upharpoonright \text{ker} \left(\widetilde{\Gamma}_0 \pm 2\textit{c}\widetilde{\Gamma}_1\right) \text{, i.e.}$$

$$\operatorname{\mathsf{dom}} S^*\ni f\in\operatorname{\mathsf{dom}} \overline{A_{\pm2c}}\Leftrightarrow\mp\frac{1}{2c}\widetilde{\Gamma}_0f=\widetilde{\Gamma}_1f\quad\text{in }H^{-1/2}(\Sigma)$$

Properties of $\overline{A_{\pm 2c}}$

Recall:
$$\overline{A_{\pm 2c}} = S^* \upharpoonright \ker \left(\mp \frac{1}{2c} \widetilde{\Gamma}_0 - \widetilde{\Gamma}_1 \right)$$

Proposition (Behrndt, Micheler 2014)

Let $\lambda \in \rho(A_0)$. Then, $\gamma(\lambda)$ and $M(\lambda)$ have continuous extensions

$$\widetilde{\gamma}(\lambda): H^{-1/2}(\Sigma) \to L^2(\mathbb{R}^3),$$
 $\widetilde{M}(\lambda): H^{-1/2}(\Sigma) \to H^{-1/2}(\Sigma).$

Theorem (Behrndt, H. 2017)

- (i) dom $\overline{A_{\pm 2c}} \not\subset H^1(\mathbb{R}^3 \setminus \Sigma)$;
- (ii) $(-\infty, -mc^2] \cup [mc^2, \infty) \subset \sigma(\overline{A_{\pm 2c}});$
- (iii) For $\lambda \in \mathbb{C} \setminus \mathbb{R}$ it holds

$$(\overline{A_{\pm 2c}} - \lambda)^{-1} = (A_0 - \lambda)^{-1} - \widetilde{\gamma}(\lambda) (I + \eta \widetilde{M}(\lambda))^{-1} \eta \gamma(\overline{\lambda})^*.$$

Summary and outlook

Summary:

- Quasi boundary triples are a suitable tool to investigate Dirac operators with singular interactions
- Dirac operators with electrostatic δ -shell interactions of strength $\eta \neq \pm 2c$:
 - Self-adjointness and resolvent formula
 - $\sigma_d(A_\eta)$ is finite
 - The nonrelativistic limit is $-\frac{1}{2m}\Delta + \eta\delta_{\Sigma}$
- Self-adjointness and resolvent formula for Dirac operators with electrostatic δ -shell interactions of strength $\eta=\pm 2c$

Outlook:

- Spectral properties of $\overline{A_{\pm 2c}}$ in the gap
- More general interaction strengths

Thank you for your attention!