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Graphene and its effective Hamiltonian
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The effective Hamiltonians for graphene are given by:

1. The nearest neighbour lattice Laplacian on a two-dimensional
honeycomb lattice (Wallace '47, Pereira, Nilson, Castro Neto
'07, Castro Neto, Guinea, Peres, Novoselov, Geim '09);

2. Periodic Schrodinger operator —A + W, where W is smooth
and has honeycomb symmetry (Feffermann, Weinstein '12).



Graphene and its effective Hamiltonian
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[
Energy of electrons in graphene in the tight-binding
model, The Band Theory of Graphite

P. R. Wallace, Phys. Rev. 71, 622, 1 May 1947,
http://dx.doi.org/10.1103/PhysRev.71.622,

Paul Wenk, Wikimedia Commons

Near the conical point the ef-
fective Hamiltonain is given
in L?(R?,C?) by the massless
Dirac operator

Dy := ve(—ihV - o),
with
o = (01,02)
_ 0 1 0 —i
a 1 0/°\i O
and v¢ =~ 10° m/s (=~ 0.003c).
We choose units with veh = 1.



Coulomb-Dirac operator and the Dirac sea

Suppose now that the graphene sheet contains an attractive
Coulomb impurity of strength v. The effective Hamiltonian is then
formally given by

D, :=—iV-o—v|-|7%

> It turns out that there exists a “distinguished” self-adjoint
realisation of D, for |v| < 1/2.

» D, is invariant with respect to rotations and scaling in the
plane.

» The space of physically available states is not L2(R?,C?), but
PYL2(R?,C?), where PY := Pjg »)(D,) is the spectral
projection of D, to the interval [0, c0).



Perturbed positively projected Coulomb-Dirac
Operator
> We now want to apply a further Hermitian matrix-valued

potential V. If V is not strong enough to substantially modify
the Dirac sea, the effective Hamiltonian takes the form

D,(V):= Py(D, - V)PL.
» We assume that
tr(VET) € LN(R) with (v,7) € ([0,1/2]%[0,00))\{(1/2,0)},
where
x4 1= max{£x,0}.

» Under this assumption (and form-boundedness of V_ with
respect to D,) D, (V) is self-adjoint, with negative spectrum
consisting of eigenvalues possibly accumulating at zero.

» Qur main results provide estimates of these eigenvalues.



The Cwikel-Lieb-Rosenblum bound on the
number of negative eigenvalues

Theorem 1
Let v € [0,1/2). There exists CS“R > 0 such that

rank (D, (V))_ < CCLR /R2 tr(V+(x))2dx. (1)

Analogues of Theorem 1 are known for many bounded from below

self-adjoint operators as Cwickel-Lieb-Rozenblum inequalities. In
particular, in Frank '14 it is proved that the estimate

rank ((—A)°* = V) _ < (4ms)7}(1 — 5)(2)/s / tr (Vi (x))"/*dx
RZ

holds for all 0 < s < 1.



Virtual level at zero

Theorem 2
Let

~ 1 [or Vii(r, ) —iVia(r go)ei‘P)
V(r) = — . N ’ de.
(r) 277/0 <1V21(f7 ple”'¥ Vai(r, ¢) v

Suppose that B
[V||c2x2 € LY (R, (14 r?)dr)

(D)) arso

Then the negative spectrum of Dy »(V') is non-empty.



(Hardy-)Lieb-Thirring inequalities

Theorem 3
Let v € [0,1/2] and v > 0. There exists C}; > 0 such that

tr (D,(V))? < C,I{/ tr (V+(x))2+7dx.
R2

Theorem 3 is a form of Lieb-Thirring inequality.



Hardy-Lieb-Thirring inequalities

For v =1/2 Theorem 3 is an equivalent of Hardy-Lieb-Thirring
inequality by Ekholm, Frank, Lieb, Seiringer:
For d € N and 0 < s < d/2 the operator

(—A)y —al-[7*
is bounded below if and only if

2s r2 ((d + 25)/4)

a< CGqgq:=2 W

holds. For v > 0 there exists L, 45 > 0 such that

_ d
tr ((—A)° — Codl - | 2 _ V)T < L%d,s/d V(x)1+ /25 qx.
R



Lower bounds via fractional Laplacian

The proofs of Theorems 1 and 3 are based upon
Theorem 4

1. For every v € [0,1/2) there exists C, > 0 such that
|D1/| P Cz/\/ —-A ® ]12

holds.
2. For any A € [0,1) there exists Ky > 0 such that

Dy o] > (KA (=22~ Y @ 1,

holds for any £ > 0.



The operator inequality (4)
Dy1jo| = (KA H(=A)V2 — 7Y @ 1o

is related to the estimate for the fractional Schrodinger operator
with Coulomb potential in L?(R?): For any t € (0,1/2) there
exists My > 0 such that

2
1/2 (ii;j‘j‘g;g’) : | > Mt€2t71(_A)t - 671

holds for all £ > 0, see Frank '09 (and Solovej, Sgrensen and
Spitzer '10 for an analogous result in three dimensions).

(=4)



Coulomb-Dirac operators on the half-line

For k,v € R let

B:=VkK2—-12c Ry UiR,.

and consider the differential expression

U — (d—V/C{ —& - I:) i (5)

$-2

It turns out that for 5 > 1/2 the corresponding symmetric
operator defined on C3°(R,, C2) is essentially self-adjoint in
L2(R,C?). For all other values of 3 there exists a one-parametric
family of self-adjoint extensions {Dﬁﬁ}%[om).

There exists a unitary A : L2(R2,C?) - @ L%(R,,C?) such
#E€L+1/2

D,,zA*( b D;”(’;)>A. (6)

KEZ+1/2

that



Results for D)),

With P_VF"{’H = Plo,00)(DP ;) consider the negative spectrum of
DI (V) i= PLA(D0, — V)P

on PY"PL2(R,,C?). We observe the following situations:



0
Cases for D,

VL: There exists a measurable function A?,,,,i : Ry — C? vanishing
almost nowhere such that for any V satisfying

/ LA (1), V()AL (1)) adr > 0

the operator DY, (V) has non-empty negative spectrum.

E1: For g > 1 there exist weight functions W/, : R, — R, such
that

ank Pl (D)) < [ Vi) Gaa WEE ()
E2: For V; € L™(R,C?*?) there exists K, , € R such that
rank P(_o0.0)(Df (V) < Km/o | V()| oo

% (|n2(etan9r)+|n2 (e+2r||\/+HLoo(R+’(Cz><2))) dr.



Results for D)),

With
B:=+vVk2—12c R, UiR,.
we get
0=0|0=n/2|0¢c(0,m)\{r/2}

F>1/2| — E1 —
Be(0,1/2) | VL E1 E1
B=0#rk| E2 | VL E2
B=0=k| VL VL VL
BeiRy | VL VL VL




Spectral representation

Theorem 5

Let A be the operator of multiplication by the independent variable
in L>(R, C,dx). Let Py (Ai ) be the solution of d"" gy = Adgy
satisfying the boundary condition at zero. We find an explicit
my"(\) such that

U" : L2(Ry,C%,dr) — L3(R, C, dx),

Uy™F)(A) = L2limy [y / (P55(X v))TF(y) dy
Uy i 00 ()

is well-defined and unitary. It delivers the spectral representation of
D", ie.
2] ’

Dy = (U™ Uy "

holds.



Mellin transform

Let M be the unitary Mellin transform, first defined on C3°(R.) by
1 & -

Muy)(s) = / r~ Y275y (r)dr, 7

(M)(s) Nl e(r) (7)

and then extended to a unitary operator M : L2(Ry) — L?(R).

Definition 6
For A € R\ {0} let ©, be the set of functions 1/ € L?(R) such
that there exists W analytic in the strip
&*:={z€ C:Imz/X € (0,1)} with the properties
2_ . . . _ AY
1. l;_JJF%] V(-4 itA) = (-);

2. there exists L-lim W(- 4 it));
t—1-0

3. sup /‘\If(s+it)\)}2ds<oo.
te(0,1) JR



For A € R let the operator of multiplication by r* in L>(R,,dr) be
defined on its maximal domain L?(R, (14 r?*)dr). Applying a
lemma of Titchmarsh to justify the translations of the integration
contour between different values of t under Assumption 3 of
Definition 6 we obtain

Theorem 7
Let A € R\ {0}. Then the identity

D) = ML2(Ry, (14 r*)dr)

holds, and for any 1) € ® ) the function W from Definition 6
satisfies

W(z) = (Mr'™mZ M*p)(Re 2), for all z € &,



We conclude that r* acts as a complex shift in the Mellin space.
Indeed, for A € R let R* : ©, — L?(R) be the linear operator
defined by

Rhp It_illgn V(- +1itd), A#Q0;
e A=0,

with W as in Definition 6. It follows from Theorem 7 that R is
well-defined and that
MAM* = RA (8)

holds.



Fourier-Mellin theory of the relativistic
massless Coulomb operator in two dimensions

We find that
T((-2)2 o - [T = D (L - aVim-12(- +1/2)) R,
meZ
where 7 = MWZUF is unitary and

T +1+i2)/2)T((+1-iz)/2)

) = (et 2T (G 2-2)2)

(9)

forje Ng—1/2 and z € C\i(Z+1/2).
An analogous representation was used in three dimensions by
Yaouanc, Oliver, and Raynal '97.



Thank you
for your attention!



