On the eigenvalues of perturbed projected Coulomb–Dirac operators

Sergey Morozov

LMU Munich, Germany

Linear and Nonlinear Dirac Equation: advances and open problems

Como

10 February 2017

References

This talk is based on joint results with

David Müller (LMU Munich, Germany)

Lieb-Thirring and Cwickel-Lieb-Rozenblum inequalities for perturbed graphene with a Coulomb impurity

Accepted to J. Spectr. Theory. arXiv:1603.01485,

On the virtual levels of positively projected massless Coulomb-Dirac operators

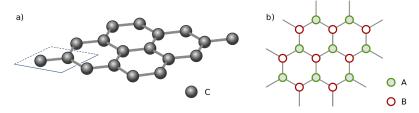
arXiv:1607.08902

and

Lower bounds on the moduli of three-dimensional Coulomb-Dirac operators via fractional Laplacians with applications

arXiv:1607.08902

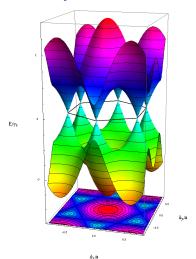
Graphene and its effective Hamiltonian



The effective Hamiltonians for graphene are given by:

- The nearest neighbour lattice Laplacian on a two-dimensional honeycomb lattice (Wallace '47, Pereira, Nilson, Castro Neto '07, Castro Neto, Guinea, Peres, Novoselov, Geim '09);
- 2. Periodic Schrödinger operator $-\Delta + W$, where W is smooth and has honeycomb symmetry (Feffermann, Weinstein '12).

Graphene and its effective Hamiltonian



Energy of electrons in graphene in the tight-binding model, The Band Theory of Graphite P. R. Wallace, Phys. Rev. 71, 622, 1 May 1947, http://dx.doi.org/10.1103/PhysRev.71.622, Paul Wenk. Wikimedia Commons

Near the conical point the effective Hamiltonain is given in $L^2(\mathbb{R}^2, \mathbb{C}^2)$ by the massless Dirac operator

$$D_0 := v_F(-i\hbar\nabla\cdot\boldsymbol{\sigma}),$$

with

$$\begin{aligned} \boldsymbol{\sigma} &= (\sigma_1, \sigma_2) \\ &= \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \right) \end{aligned}$$

and $v_F \approx 10^6$ m/s ($\approx 0.003c$). We choose units with $v_F \hbar = 1$.

Coulomb-Dirac operator and the Dirac sea

Suppose now that the graphene sheet contains an attractive Coulomb impurity of strength ν . The effective Hamiltonian is then formally given by

$$D_{\nu} := -\mathrm{i}\nabla \cdot \boldsymbol{\sigma} - \nu |\cdot|^{-1}.$$

- It turns out that there exists a "distinguished" self-adjoint realisation of D_{ν} for $|\nu| \leq 1/2$.
- $ightharpoonup D_{\nu}$ is invariant with respect to rotations and scaling in the plane.
- ▶ The space of physically available states is not L²(\mathbb{R}^2 , \mathbb{C}^2), but $P_+^{\nu}\mathsf{L}^2(\mathbb{R}^2,\mathbb{C}^2)$, where $P_+^{\nu}:=P_{[0,\infty)}(D_{\nu})$ is the spectral projection of D_{ν} to the interval $[0,\infty)$.

Perturbed positively projected Coulomb-Dirac Operator

▶ We now want to apply a further Hermitian matrix-valued potential *V*. If *V* is not strong enough to substantially modify the Dirac sea, the effective Hamiltonian takes the form

$$D_{\nu}(V) := P_{+}^{\nu}(D_{\nu} - V)P_{+}^{\nu}.$$

We assume that

$$\operatorname{tr}(V_+^{2+\gamma})\in \operatorname{L}^1(\mathbb{R}^2) \text{ with } (\nu,\gamma)\in \big([0,1/2]\times[0,\infty)\big)\backslash\big\{(1/2,0)\big\},$$
 where

$$x_{\pm} := \max\{\pm x, 0\}.$$

- ▶ Under this assumption (and form-boundedness of V_{-} with respect to D_{ν}) $D_{\nu}(V)$ is self-adjoint, with negative spectrum consisting of eigenvalues possibly accumulating at zero.
- Our main results provide estimates of these eigenvalues.

The Cwikel-Lieb-Rosenblum bound on the number of negative eigenvalues

Theorem 1

Let $\nu \in [0,1/2)$. There exists $C_{\nu}^{\rm CLR} > 0$ such that

$$\operatorname{\mathsf{rank}} \big(D_{\nu}(V) \big)_{-} \leqslant C_{\nu}^{\operatorname{CLR}} \int_{\mathbb{R}^{2}} \operatorname{\mathsf{tr}} \big(V_{+}(\mathbf{x}) \big)^{2} \mathrm{d}\mathbf{x}. \tag{1}$$

Analogues of Theorem 1 are known for many bounded from below self-adjoint operators as Cwickel-Lieb-Rozenblum inequalities. In particular, in Frank '14 it is proved that the estimate

$$\operatorname{\mathsf{rank}} \left((-\Delta)^{s} - V \right)_{-} \leqslant (4\pi s)^{-1} (1-s)^{(s-2)/s} \int_{\mathbb{D}^{2}} \operatorname{\mathsf{tr}} \left(V_{+}(\mathbf{x}) \right)^{1/s} \mathrm{d}\mathbf{x}$$

holds for all 0 < s < 1.

Virtual level at zero

Theorem 2

Let

$$\widetilde{V}(r) := rac{1}{2\pi} \int_0^{2\pi} egin{pmatrix} V_{11}(r,arphi) & -\mathrm{i} V_{12}(r,arphi) \mathrm{e}^{\mathrm{i}arphi} \ \mathrm{i} V_{21}(r,arphi) \mathrm{e}^{-\mathrm{i}arphi} & V_{11}(r,arphi) \end{pmatrix} \, \mathrm{d}arphi.$$

Suppose that

$$\|\widetilde{V}\|_{\mathbb{C}^{2\times 2}} \in \mathsf{L}^1(\mathbb{R}_+,(1+r^2)\mathrm{d}r)$$

and

$$\int_0^\infty \left\langle \binom{-1}{1}, \widetilde{V}(r) \binom{-1}{1} \right\rangle_{\mathbb{C}^2} \mathrm{d}r > 0.$$

Then the negative spectrum of $D_{1/2}(V)$ is non-empty.

(Hardy-)Lieb-Thirring inequalities

Theorem 3

Let $\nu \in [0, 1/2]$ and $\gamma > 0$. There exists $C_{\nu, \gamma}^{\mathrm{LT}} > 0$ such that

$$\operatorname{tr}\left(D_{\nu}(V)\right)_{-}^{\gamma} \leqslant C_{\nu,\gamma}^{\operatorname{LT}} \int_{\mathbb{P}^{2}} \operatorname{tr}\left(V_{+}(\mathbf{x})\right)^{2+\gamma} \mathrm{d}\mathbf{x}. \tag{2}$$

Theorem 3 is a form of Lieb-Thirring inequality.

Hardy-Lieb-Thirring inequalities

For $\nu=1/2$ Theorem 3 is an equivalent of Hardy-Lieb-Thirring inequality by Ekholm, Frank, Lieb, Seiringer:

For $d \in \mathbb{N}$ and 0 < s < d/2 the operator

$$(-\Delta)^s - \alpha |\cdot|^{-2s}$$

is bounded below if and only if

$$\alpha \leqslant C_{s,d} := 2^{2s} \frac{\Gamma^2((d+2s)/4)}{\Gamma^2((d-2s)/4)}$$

holds. For $\gamma > 0$ there exists $L_{\gamma,d,s} > 0$ such that

$$\operatorname{tr}\left((-\Delta)^{s}-C_{s,d}|\cdot|^{-2s}-V\right)_{-}^{\gamma}\leqslant L_{\gamma,d,s}\int_{\mathbb{R}^{d}}V(\mathbf{x})_{+}^{\gamma+d/2s}\mathrm{d}\mathbf{x}.$$

Lower bounds via fractional Laplacian

The proofs of Theorems 1 and 3 are based upon

1. For every $\nu \in [0, 1/2)$ there exists $C_{\nu} > 0$ such that

$$|D_{\nu}| \geqslant C_{\nu} \sqrt{-\Delta} \otimes \mathbb{1}_2 \tag{3}$$

holds.

Theorem 4

2. For any $\lambda \in [0,1)$ there exists $K_{\lambda} > 0$ such that

$$|D_{1/2}| \geqslant \left(K_{\lambda} \ell^{\lambda - 1} (-\Delta)^{\lambda/2} - \ell^{-1} \right) \otimes \mathbb{1}_2 \tag{4}$$

holds for any $\ell > 0$.

The operator inequality (4)

$$|D_{1/2}|\geqslant \left(\mathsf{K}_{\lambda}\ell^{\lambda-1}(-\Delta)^{\lambda/2}-\ell^{-1}
ight)\otimes\mathbb{1}_{2}$$

is related to the estimate for the fractional Schrödinger operator with Coulomb potential in $L^2(\mathbb{R}^2)$: For any $t \in (0,1/2)$ there exists $M_t > 0$ such that

$$(-\Delta)^{1/2} - \frac{2(\Gamma(3/4))^2}{(\Gamma(1/4))^2|\cdot|} \geqslant M_t \ell^{2t-1} (-\Delta)^t - \ell^{-1}$$

holds for all $\ell > 0$, see Frank '09 (and Solovej, Sørensen and Spitzer '10 for an analogous result in three dimensions).

Coulomb-Dirac operators on the half-line

For $\kappa, \nu \in \mathbb{R}$ let

$$\beta := \sqrt{\kappa^2 - \nu^2} \in \overline{\mathbb{R}_+} \cup i\mathbb{R}_+.$$

and consider the differential expression

$$d^{\nu,\kappa} := \begin{pmatrix} -\nu/r & -\frac{\mathrm{d}}{\mathrm{d}r} - \frac{\kappa}{r} \\ \frac{\mathrm{d}}{\mathrm{d}r} - \frac{\kappa}{r} & -\nu/r \end{pmatrix}. \tag{5}$$

It turns out that for $\beta \geqslant 1/2$ the corresponding symmetric operator defined on $C_0^{\infty}(\mathbb{R}_+,\mathbb{C}^2)$ is essentially self-adjoint in $L^2(\mathbb{R}_+,\mathbb{C}^2)$. For all other values of β there exists a one-parametric family of self-adjoint extensions $\{D_{\nu,\kappa}^{\theta}\}_{\theta\in[0,\pi)}$. There exists a unitary $\mathcal{A}: \mathsf{L}^2(\mathbb{R}^2,\mathbb{C}^2) \to \bigoplus \mathsf{L}^2(\mathbb{R}_+,\mathbb{C}^2)$ such

that

$$D_{\nu} = \mathcal{A}^* \bigg(\bigoplus_{\kappa \in \mathbb{Z} + 1/2} D_{\boldsymbol{\theta}(\kappa)}^{\nu,\kappa} \bigg) \mathcal{A}. \tag{6}$$

Results for $D_{\nu,\kappa}^{\theta}$

With $P_+^{
u,\kappa, heta}:=P_{[0,\infty)}(D^{ heta}_{
u,\kappa})$ consider the negative spectrum of

$$D_{
u,\kappa}^{ heta}(V):=P_{+}^{
u,\kappa, heta}(D_{
u,\kappa}^{ heta}-V)P_{+}^{
u,\kappa, heta}$$

on $P_+^{\nu,\kappa,\theta}\mathsf{L}^2(\mathbb{R}_+,\mathbb{C}^2)$. We observe the following situations:

Cases for $D_{\nu,\kappa}^{\theta}$

VL: There exists a measurable function $A_{\nu,\kappa}^{\theta}: \mathbb{R}_+ \to \mathbb{C}^2$ vanishing almost nowhere such that for any V satisfying

$$\int_0^\infty \left\langle A_{\nu,\kappa}^{\theta}(r), V(r) A_{\nu,\kappa}^{\theta}(r) \right\rangle_{\mathbb{C}^2} \mathrm{d}r > 0$$

the operator $D_{\nu,\kappa}^{\theta}(V)$ has non-empty negative spectrum.

E1: For q>1 there exist weight functions $W_{\nu,\kappa}^{\theta,q}:\mathbb{R}_+\to\overline{\mathbb{R}_+}$ such that

$$\operatorname{\mathsf{rank}} P_{(-\infty,0)}\big(D^{\theta}_{\nu,\kappa}(V)\big) \leqslant \int_0^\infty \big\|V_+(r)\big\|_{\mathbb{C}^{2\times 2}}^q W^{\theta,q}_{\nu,\kappa}(r) \,\mathrm{d} r.$$

E2: For $V_+ \in L^{\infty}(\mathbb{R}_+, \mathbb{C}^{2\times 2})$ there exists $K_{\nu,\kappa} \in \mathbb{R}_+$ such that

$$\begin{split} \operatorname{\mathsf{rank}} P_{(-\infty,0)}\big(D_{\nu,\kappa}^{\theta}(V)\big) \leqslant K_{\nu,\kappa} \int_0^\infty \big\| V_+(r) \big\|_{\mathbb{C}^{2\times 2}} \\ & \times \left(\left. \ln^2(\operatorname{e}^{\tan\theta} r) + \ln^2\left(\operatorname{e} + 2r \|V_+\|_{\mathsf{L}^\infty(\mathbb{R}_+,\mathbb{C}^{2\times 2})}\right) \right) \mathrm{d} r. \end{split}$$

Results for $D_{\nu,\kappa}^{\theta}$

With

$$\beta := \sqrt{\kappa^2 - \nu^2} \in \overline{\mathbb{R}_+} \cup i\mathbb{R}_+.$$

we get

$$\begin{array}{c|ccccc} & \theta = 0 & \theta = \pi/2 & \theta \in (0,\pi) \setminus \{\pi/2\} \\ \hline \beta \geqslant 1/2 & -- & E1 & -- \\ \beta \in (0,1/2) & \text{VL} & E1 & E1 \\ \beta = 0 \neq \kappa & E2 & \text{VL} & E2 \\ \beta = 0 = \kappa & \text{VL} & \text{VL} & \text{VL} \\ \beta \in i\mathbb{R}_+ & \text{VL} & \text{VL} & \text{VL} \end{array}$$

Spectral representation

Theorem 5

Let Λ be the operator of multiplication by the independent variable in $L^2(\mathbb{R},\mathbb{C},\mathrm{d}x)$. Let $\Phi_{0,\theta}^{\nu,\kappa}(\lambda;\cdot)$ be the solution of $d^{\nu,\kappa}\Phi_{0,\theta}^{\nu,\kappa}=\lambda\Phi_{0,\theta}^{\nu,\kappa}$ satisfying the boundary condition at zero. We find an explicit $m_{\theta}^{\nu,\kappa}(\lambda)$ such that

$$\mathcal{U}_{\theta}^{\nu,\kappa} : \mathsf{L}^{2}(\mathbb{R}_{+}, \mathbb{C}^{2}, \mathrm{d}r) \to \mathsf{L}^{2}(\mathbb{R}, \mathbb{C}, \mathrm{d}x),$$
$$(\mathcal{U}_{\theta}^{\nu,\kappa}f)(\lambda) := \mathsf{L}^{2}_{R \to \infty}^{2} \sqrt{m_{\theta}^{\nu,\kappa}(\lambda)} \int_{1/R}^{R} \left(\Phi_{0,\theta}^{\nu,\kappa}(\lambda; y)\right)^{\mathsf{T}} f(y) \, \mathrm{d}y$$

is well-defined and unitary. It delivers the spectral representation of $D^{\nu,\kappa}_{\mu}$, i.e.

$$D_{\theta}^{\nu,\kappa} = (\mathcal{U}_{\theta}^{\nu,\kappa})^* \Lambda \, \mathcal{U}_{\theta}^{\nu,\kappa}$$

holds.

Mellin transform

Let $\mathcal M$ be the unitary Mellin transform, first defined on $\mathsf C_0^\infty(\mathbb R_+)$ by

$$(\mathcal{M}\psi)(s) := \frac{1}{\sqrt{2\pi}} \int_0^\infty r^{-1/2 - \mathrm{i}s} \psi(r) \mathrm{d}r, \tag{7}$$

and then extended to a unitary operator $\mathcal{M}:\mathsf{L}^2(\mathbb{R}_+)\to\mathsf{L}^2(\mathbb{R}).$

Definition 6

For $\lambda \in \mathbb{R} \setminus \{0\}$ let \mathfrak{D}_{λ} be the set of functions $\psi \in L^2(\mathbb{R})$ such that there exists Ψ analytic in the strip

 $\mathfrak{S}^{\lambda}:=\left\{z\in\mathbb{C}:\operatorname{Im}z/\lambda\in(0,1)
ight\}$ with the properties

- 1. $\underset{t\to+0}{\mathsf{L}^2\text{-lim}} \Psi(\cdot + \mathrm{i}t\lambda) = \psi(\cdot);$
- 2. there exists $\underset{t\to 1-0}{\mathsf{L}^2\text{-lim}} \ \Psi(\cdot + \mathrm{i} t\lambda);$
- 3. $\sup_{t \in (0,1)} \int_{\mathbb{R}} |\Psi(s + it\lambda)|^2 ds < \infty.$

For $\lambda \in \mathbb{R}$ let the operator of multiplication by r^{λ} in $L^{2}(\mathbb{R}_{+}, \mathrm{d}r)$ be defined on its maximal domain $L^{2}(\mathbb{R}_{+}, (1+r^{2\lambda})\mathrm{d}r)$. Applying a lemma of Titchmarsh to justify the translations of the integration contour between different values of t under Assumption 3 of Definition 6 we obtain

Theorem 7

Let $\lambda \in \mathbb{R} \setminus \{0\}$. Then the identity

$$\mathfrak{D}_{\lambda} = \mathcal{M}\mathsf{L}^{2}\big(\mathbb{R}_{+}, (1+r^{2\lambda})\mathrm{d}r\big)$$

holds, and for any $\psi \in \mathfrak{D}_{\lambda}$ the function Ψ from Definition 6 satisfies

$$\Psi(z) = (\mathcal{M}r^{\operatorname{Im} z}\mathcal{M}^*\psi)(\operatorname{Re} z), \quad \text{for all } z \in \mathfrak{S}^{\lambda}.$$

We conclude that r^{λ} acts as a complex shift in the Mellin space. Indeed, for $\lambda \in \mathbb{R}$ let $R^{\lambda}: \mathfrak{D}_{\lambda} \to \mathsf{L}^2(\mathbb{R})$ be the linear operator defined by

$$R^{\lambda}\psi:=egin{cases} \mathsf{L}^{2} ext{-lim}\ \psi(\cdot+\mathrm{i}t\lambda), & \lambda
eq 0;\ \psi, & \lambda=0, \end{cases}$$

with Ψ as in Definition 6. It follows from Theorem 7 that R^{λ} is well-defined and that

$$\mathcal{M}r^{\lambda}\mathcal{M}^{*} = R^{\lambda} \tag{8}$$

holds.

Fourier-Mellin theory of the relativistic massless Coulomb operator in two dimensions

We find that

$$\mathcal{T}\big((-\Delta)^{1/2}-\alpha|\cdot|^{-1}\big)\mathcal{T}^*=\bigoplus_{m\in\mathbb{Z}}\big(1-\alpha V_{|m|-1/2}(\cdot+\mathrm{i}/2)\big)R^1,$$

where $\mathcal{T} = \mathcal{MWF}$ is unitary and

$$V_{j}(z) := \frac{\Gamma((j+1+iz)/2)\Gamma((j+1-iz)/2)}{2\Gamma((j+2+iz)/2)\Gamma((j+2-iz)/2)},$$
 (9)

for $j \in \mathbb{N}_0 - 1/2$ and $z \in \mathbb{C} \setminus i(\mathbb{Z} + 1/2)$.

An analogous representation was used in three dimensions by Yaouanc, Oliver, and Raynal '97.

for your attention!

Thank you