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Graphene and its effective Hamiltonian

The effective Hamiltonians for graphene are given by:

1. The nearest neighbour lattice Laplacian on a two-dimensional
honeycomb lattice (Wallace ’47, Pereira, Nilson, Castro Neto
’07, Castro Neto, Guinea, Peres, Novoselov, Geim ’09);

2. Periodic Schrödinger operator −∆ + W , where W is smooth
and has honeycomb symmetry (Feffermann, Weinstein ’12).



Graphene and its effective Hamiltonian

Energy of electrons in graphene in the tight-binding
model, The Band Theory of Graphite
P. R. Wallace, Phys. Rev. 71, 622, 1 May 1947,
http://dx.doi.org/10.1103/PhysRev.71.622,
Paul Wenk, Wikimedia Commons

Near the conical point the ef-
fective Hamiltonain is given
in L2(R2,C2) by the massless
Dirac operator

D0 := vF (−i~∇ · σ),

with

σ = (σ1, σ2)

=

((
0 1
1 0

)
,

(
0 −i
i 0

))
and vF ≈ 106 m/s (≈ 0.003c).
We choose units with vF~ = 1.



Coulomb-Dirac operator and the Dirac sea

Suppose now that the graphene sheet contains an attractive
Coulomb impurity of strength ν. The effective Hamiltonian is then
formally given by

Dν := −i∇ · σ − ν| · |−1.

I It turns out that there exists a “distinguished” self-adjoint
realisation of Dν for |ν| 6 1/2.

I Dν is invariant with respect to rotations and scaling in the
plane.

I The space of physically available states is not L2(R2,C2), but
Pν
+L2(R2,C2), where Pν

+ := P[0,∞)(Dν) is the spectral
projection of Dν to the interval [0,∞).



Perturbed positively projected Coulomb-Dirac
Operator

I We now want to apply a further Hermitian matrix-valued
potential V . If V is not strong enough to substantially modify
the Dirac sea, the effective Hamiltonian takes the form

Dν(V ) := Pν
+(Dν − V )Pν

+.

I We assume that

tr(V 2+γ
+ ) ∈ L1(R2) with (ν, γ) ∈

(
[0, 1/2]×[0,∞)

)
\
{

(1/2, 0)
}
,

where
x± := max{±x , 0}.

I Under this assumption (and form-boundedness of V− with
respect to Dν) Dν(V ) is self-adjoint, with negative spectrum
consisting of eigenvalues possibly accumulating at zero.

I Our main results provide estimates of these eigenvalues.



The Cwikel-Lieb-Rosenblum bound on the
number of negative eigenvalues

Theorem 1
Let ν ∈ [0, 1/2). There exists CCLR

ν > 0 such that

rank
(
Dν(V )

)
− 6 CCLR

ν

∫
R2

tr
(
V+(x)

)2
dx. (1)

Analogues of Theorem 1 are known for many bounded from below
self-adjoint operators as Cwickel-Lieb-Rozenblum inequalities. In
particular, in Frank ’14 it is proved that the estimate

rank
(
(−∆)s − V

)
− 6 (4πs)−1(1− s)(s−2)/s

∫
R2

tr
(
V+(x)

)1/s
dx

holds for all 0 < s < 1.



Virtual level at zero

Theorem 2
Let

Ṽ (r) :=
1

2π

∫ 2π

0

(
V11(r , ϕ) −iV12(r , ϕ)eiϕ

iV21(r , ϕ)e−iϕ V11(r , ϕ)

)
dϕ.

Suppose that
‖Ṽ ‖C2×2 ∈ L1

(
R+, (1 + r2)dr

)
and ∫ ∞

0

〈(
−1

1

)
, Ṽ (r)

(
−1

1

)〉
C2

dr > 0.

Then the negative spectrum of D1/2(V ) is non-empty.



(Hardy-)Lieb-Thirring inequalities

Theorem 3
Let ν ∈ [0, 1/2] and γ > 0. There exists CLT

ν,γ > 0 such that

tr
(
Dν(V )

)γ
− 6 CLT

ν,γ

∫
R2

tr
(
V+(x)

)2+γ
dx. (2)

Theorem 3 is a form of Lieb-Thirring inequality.



Hardy-Lieb-Thirring inequalities

For ν = 1/2 Theorem 3 is an equivalent of Hardy-Lieb-Thirring
inequality by Ekholm, Frank, Lieb, Seiringer:
For d ∈ N and 0 < s < d/2 the operator

(−∆)s − α| · |−2s

is bounded below if and only if

α 6 Cs,d := 22s
Γ2
(
(d + 2s)/4

)
Γ2
(
(d − 2s)/4

)
holds. For γ > 0 there exists Lγ,d ,s > 0 such that

tr
(
(−∆)s − Cs,d | · |−2s − V

)γ
− 6 Lγ,d ,s

∫
Rd

V (x)
γ+d/2s
+ dx.



Lower bounds via fractional Laplacian

The proofs of Theorems 1 and 3 are based upon

Theorem 4

1. For every ν ∈ [0, 1/2) there exists Cν > 0 such that

|Dν | > Cν
√
−∆⊗ 12 (3)

holds.

2. For any λ ∈ [0, 1) there exists Kλ > 0 such that

|D1/2| >
(
Kλ`

λ−1(−∆)λ/2 − `−1
)
⊗ 12 (4)

holds for any ` > 0.



The operator inequality (4)

|D1/2| >
(
Kλ`

λ−1(−∆)λ/2 − `−1
)
⊗ 12

is related to the estimate for the fractional Schrödinger operator
with Coulomb potential in L2(R2): For any t ∈ (0, 1/2) there
exists Mt > 0 such that

(−∆)1/2 −
2
(
Γ(3/4)

)2(
Γ(1/4)

)2| · | > Mt`
2t−1(−∆)t − `−1

holds for all ` > 0, see Frank ’09 (and Solovej, Sørensen and
Spitzer ’10 for an analogous result in three dimensions).



Coulomb-Dirac operators on the half-line

For κ, ν ∈ R let

β :=
√
κ2 − ν2 ∈ R+ ∪ iR+.

and consider the differential expression

dν,κ :=

(
−ν/r − d

dr −
κ
r

d
dr −

κ
r −ν/r

)
. (5)

It turns out that for β > 1/2 the corresponding symmetric
operator defined on C∞0 (R+,C2) is essentially self-adjoint in
L2(R+,C2). For all other values of β there exists a one-parametric
family of self-adjoint extensions {Dθ

ν,κ}θ∈[0,π).
There exists a unitary A : L2(R2,C2)→

⊕
κ∈Z+1/2

L2(R+,C2) such

that

Dν = A∗
( ⊕
κ∈Z+1/2

Dν,κ
θ(κ)

)
A. (6)



Results for Dθ
ν,κ

With Pν,κ,θ
+ := P[0,∞)(Dθ

ν,κ) consider the negative spectrum of

Dθ
ν,κ(V ) := Pν,κ,θ

+ (Dθ
ν,κ − V )Pν,κ,θ

+

on Pν,κ,θ
+ L2(R+,C2). We observe the following situations:



Cases for Dθ
ν,κ

VL: There exists a measurable function Aθν,κ : R+ → C2 vanishing
almost nowhere such that for any V satisfying∫ ∞

0

〈
Aθν,κ(r),V (r)Aθν,κ(r)

〉
C2dr > 0

the operator Dθ
ν,κ(V ) has non-empty negative spectrum.

E1: For q > 1 there exist weight functions W θ,q
ν,κ : R+ → R+ such

that

rank P(−∞,0)
(
Dθ
ν,κ(V )

)
6
∫ ∞
0

∥∥V+(r)
∥∥q
C2×2W θ,q

ν,κ (r) dr .

E2: For V+ ∈ L∞(R+,C2×2) there exists Kν,κ ∈ R+ such that

rank P(−∞,0)
(
Dθ
ν,κ(V )

)
6 Kν,κ

∫ ∞
0

∥∥V+(r)
∥∥
C2×2

×
(

ln2(etan θr) + ln2
(
e + 2r‖V+‖L∞(R+,C2×2)

))
dr .



Results for Dθ
ν,κ

With
β :=

√
κ2 − ν2 ∈ R+ ∪ iR+.

we get

θ = 0 θ = π/2 θ ∈ (0, π) \ {π/2}
β > 1/2 — E1 —

β ∈ (0, 1/2) VL E1 E1
β = 0 6= κ E2 VL E2
β = 0 = κ VL VL VL
β ∈ iR+ VL VL VL



Spectral representation

Theorem 5
Let Λ be the operator of multiplication by the independent variable
in L2(R,C, dx). Let Φν,κ

0,θ (λ; ·) be the solution of dν,κΦν,κ
0,θ = λΦν,κ

0,θ
satisfying the boundary condition at zero. We find an explicit
mν,κ
θ (λ) such that

Uν,κθ : L2(R+,C2, dr)→ L2(R,C,dx),

(Uν,κθ f )(λ) := L2-lim
R→∞

√
mν,κ
θ (λ)

∫ R

1/R

(
Φν,κ
0,θ (λ; y)

)ᵀ
f (y) dy

is well-defined and unitary. It delivers the spectral representation of
Dν,κ
θ , i.e.

Dν,κ
θ = (Uν,κθ )∗ΛUν,κθ

holds.



Mellin transform

LetM be the unitary Mellin transform, first defined on C∞0 (R+) by

(Mψ)(s) :=
1√
2π

∫ ∞
0

r−1/2−isψ(r)dr , (7)

and then extended to a unitary operator M : L2(R+)→ L2(R).

Definition 6
For λ ∈ R \ {0} let Dλ be the set of functions ψ ∈ L2(R) such
that there exists Ψ analytic in the strip
Sλ :=

{
z ∈ C : Im z/λ ∈ (0, 1)

}
with the properties

1. L2-lim
t→+0

Ψ(·+ itλ) = ψ(·);

2. there exists L2-lim
t→1−0

Ψ(·+ itλ);

3. sup
t∈(0,1)

∫
R

∣∣Ψ(s + itλ)
∣∣2ds <∞.



For λ ∈ R let the operator of multiplication by rλ in L2(R+, dr) be
defined on its maximal domain L2

(
R+, (1 + r2λ)dr

)
. Applying a

lemma of Titchmarsh to justify the translations of the integration
contour between different values of t under Assumption 3 of
Definition 6 we obtain

Theorem 7
Let λ ∈ R \ {0}. Then the identity

Dλ =ML2
(
R+, (1 + r2λ)dr

)
holds, and for any ψ ∈ Dλ the function Ψ from Definition 6
satisfies

Ψ(z) = (Mr Im zM∗ψ)(Re z), for all z ∈ Sλ.



We conclude that rλ acts as a complex shift in the Mellin space.
Indeed, for λ ∈ R let Rλ : Dλ → L2(R) be the linear operator
defined by

Rλψ :=

L2-lim
t→1−0

Ψ(·+ itλ), λ 6= 0;

ψ, λ = 0,

with Ψ as in Definition 6. It follows from Theorem 7 that Rλ is
well-defined and that

MrλM∗ = Rλ (8)

holds.



Fourier-Mellin theory of the relativistic
massless Coulomb operator in two dimensions

We find that

T
(
(−∆)1/2 − α| · |−1

)
T ∗ =

⊕
m∈Z

(
1− αV|m|−1/2(·+ i/2)

)
R1,

where T =MWF is unitary and

Vj(z) :=
Γ
(
(j + 1 + iz)/2

)
Γ
(
(j + 1− iz)/2

)
2Γ
(
(j + 2 + iz)/2

)
Γ
(
(j + 2− iz)/2

) , (9)

for j ∈ N0 − 1/2 and z ∈ C \ i(Z + 1/2).
An analogous representation was used in three dimensions by
Yaouanc, Oliver, and Raynal ’97.



Thank you
for your attention!


