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The Dirac operator

The (free) Dirac operator is a first order operator acting on
4-spinors ¥ : R — C*, given by

D, =—icha-V + mc2[3

where ¢ denotes the speed of light, m > 0 the mass of the
electron, and h the Planck’s constant (from now on h =1).

o = (&1, ®2, «3) and B are the four Pauli-Dirac 4 X 4-matrices, given by
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and o (k = 1,2, 3) are the Pauli 2 X 2-matrices.

0 1 0 —i 10
1=11 o 2=1{i o %3=10 -1



In Fourier space Dy becomes the multiplication operator given by

2
_ 1 (mcl co-p
ﬁ(P) _‘7:D0]: - <CO" p —mc2]I2>

with eigenvalues

ui(p) = w2(p) = —u3(p) = — wa(p) = \/c2pl? + c*m? = u(p).

The unitary transformation which diagonalize ﬁ(p) is given by

. 2
Ulp) = ar (P + a_(P)B ZP s auip) = (/2 (1 4 '”C).
Pl 2 uip)

We have



D, is essentially self-adjoint and self-adjoint on
D(D,) = H'(R3,C*) with purely absolutely continuous spectrum

o(D,) = (—oo0, —mc?] U [mc?, +00).
There are two infinite rank orthogonal projectors on L?(R3,C*),

L+ B

Ar=FU(p)* ( 5

) U(p)F

such that

Do/\:l: = A:tDo =4V —c2A+ m2ct Ay
o :l:/\i \ —C2A + m2C4

and, denoting H. = A+L%(R3,C*) the positive/negative energies
subspaces, we have [2(R3,C*) =H, & H_.



The Foldy-Wouthuysen (unitary) transformation

Uy, =F tU(p)F
I, + B
2

= Aty = Uy At U;V\} =

Let denote ¢ = ($j> € L%(R3,C? x C?) we have

positive energy = 2-upper components | = U} (¢0+) € Hy

FW

negative energy = 2-lower components p_ = UF_W ( ) € H_

Dy = Uy Do U, L — /—2A + m2c4 B

[see B.Thaller, The Dirac equation, Springer-Verlag, (1992) ]



The operator /—c2A + m?c* is related to the Dirichlet problem:

(02 —c?A, +m?c)p =0 inRY ={(x,y) eRxR3|x>0}
$(0,y) = &(y) € S(R?) for y € R® = 3R%.

Indeed, solving the equation via partial Fourier transform we get

1

¢ (x,y) :W

J eip-y/g(p)e—x\/c2|p\2+m2c4 dp.
R3
We define the Dirichlet to Neumann operator T, as follows

760 =22 ) =220,

= y
0 0
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1

T (2n)32 ng &P/ €lpl + mict E(p) dp,

namely 7, = \/—c2A, + m2c* on the dense domain S(R3).



Notation:

HY?2 = i 2®3 chyor 2R3, €?), M= HURY Chor HE (R, C?)

lb117, = ”R4 (10xd? + IV, b2 + m>cHdI?) dx dy
+

R, = |yl mct i .
R3

Let & € HY/2, define the extension of & on the half-space Ri

b(x,y) = F, (E(p)e ¥V lplFrmiet (1)
then ¢ € H! and

&2 = (| B[ g2 = inf{||w[gr + war = &}

mc2J HE dy < inf ” (10, w|? + m?cHw/? ) dx dy.
R3 R?

Wir=
T



Perturbed Dirac operators

We are interested in the perturbed Dirac operators Dy + V/,
V € L3 (R3) + L>°(IR3) being a scalar potential.

Lﬁ/(]RN) denotes the weak L9 space, the space of all measurable functions f such that
sup ~o i lix 1 IF(x)] > pH 9 < +oo,

where | - | denotes the Lebesgue measure, or equivalently, for % + % =1
£ llg,w = supa |AI /7 [, 1F(x)] < +oo.

2
The Coulomb potential V(x) = —€Z in La,[R3).

Y

Let define the sesquilinear form & : HY/2 x H/2 — C as follows

eifg) = |

Ra(f(p), (ca- p+mc®B)8(p)) ., dp

+ J V(x)(f,g) . dx
R3



We look for solutions (,A) € HY? x R of the (weak) equation
E(byh) =A(Wlh)2,  Vhe HY2

Equivalently, setting & = U, P, we look for solutions
(&,A) € HY2 x R of the (weak) equation

Eow(Eyh) =A(E[R) 2, Vhe HY?, (2)

where

Ep (8 1) JwﬂW+w& p)).. dp

- JRa V(x) (Ut &, Uoth) ., dx.



The extension on R% : the Dirichlet to Neumann operator

Let (&x,A) € HY2 x R be a solution of (2) and let ¢, be the
extension of &, on the half-space ]Ri then ¢y € Hl(Ri,C“),
(br)er = & and (P, A) is a solution of the Neumann problem

(—0% — Ay + m*ct)pr =0 in R*
0
Bf;ff)\l . —Upy VU LEN+AE) on ORY =R3. (&)
5R+

On the other hand, if (dx,A) € H! x R solves the Neumann
problem (E,), setting &y = (b )¢ the trace of ¢y, then
(Ex,A) € HY? is a solution of (2).

[ L. Caffarelli; L. Silvestre, An extension problem related to the fractional Laplacian, Comm. PDE (2007)]



Variational setting

We consider the functional
7(0) = 0o |2, = 10-1, + | VONUL0, Unlh, )
_ [ o+ 1 1/2
where = ( " ) € H>and ¢, € H/~.

Then (pr,A) € H x R is a (weak) solution of the Neumann
problem (€,) if and only if

dZ(da)lh =A2Re ((da)elhe)2  Vhe H.



» Projected Dirac operator: the Brown-Ravenhall Hamiltonian
see S. Morozov S. Vugalter Ann. H. Poincaré (2006) for related pb.; V. Coti Zelati; M.N. NLA (2016),

> Pohozaev identity = Relativistic virial theorem

see e.g. B.Thaller, The Dirac equation, Springer-Verlag, (1992) ; V. Coti Zelati ; M.N. JFPT (2017)

» Variational characterizations for the (positive) eigenvalues for

e the Dirac-Coulomb problem
(see J. Dolbeaut, M. Esteban, E. Séré Calc.Var. PDE (2000) )
e the Maxwell-Dirac -Coulomb problem

V. Coti Zelati ; M.N. in progress



The Maxwell-Dirac-Coulomb system

The MDC system describes an electron interacting with its own
electromagnetic field (extended particle : W(t,x) = e~ (x)) and
with a nucleus of atomic number Z

—icax - (V= i2ANp + me?B + eD + V,p = A

(P)MDC —AD = 4mp; —AA = 47“4
N)ﬁz =1
where V, = —2‘78‘2, e = —|e| is the electron charge and (cp, J) is
the Dirac relativistic current (c9:p + V - J =0), given by
p = el J = e, ca)

hence by the Poisson formula we get
— 1_ 2,1
(D_p*m_ehM *
A=1lud = e, onp)

( see G.M. Coclide, V. Georgiev JDE(2004)) for the Maxwell-Schrédinger-Coulomb eq. ;
see M.Esteban, V. Georgiev, E. Seré Calc.Var. PDE (1996)) for stationary solutions of the Maxwell-Dirac eq.)



The MDC (nonlinear) eigenvalues problem
We look for solutions (1, A) € H/2 x R of the nonlinear equation

Dot + Wineth = A
(P { o o Wth = A
|¢|L2:1

where the effective potential Wi,y = V, + e® —eA- x € L3 (R3),
indeed |[A] < @ and if P € L? then ® € L3 (R3).

In the FW representation we look for (weak) solutions
(¢, A) € H! x R of the nonlinear Neumann problem

(—02 —c2A, + m*cH)p =0 in R

Ba—q) + Upy (V, +eD —ex - A) Uy = Aber on aRi
(5)\) av‘aRi o

|¢tr|i2 =1

O = elU bl * oy A= e(Upyder, aUp 1 ber) *

— FW



Variational setting

We consider the functional Z($) on HY, ¢ = ($f) e Xy + Xo

7(9) = -3 — 9B — 22 22 Yoy
L€ ” PoY)Pol2) = s v) - Jol2)
2 R3 xR3 |y—Z|

where pgy = IU;M}¢t,|2 and Jy = (U;V\:}th,, al- 1o, ).

— FW

(br,A) € H x R is a (weak) solution of the Neumann nonlinear
problem (€,) if and only if

dZ(pa)[hl =A2Re ((da)erlher) o Vhe H.



Existence of the “Ground state”

Given W C X; a 1-dim vector space, let define

X ={0=(§) eWa X : 1yl = 1.

Then we define

Theorem ( “ground state”)
If the atomic number Z < 124 then

» A1 € (0, mc?)
> there exists §y, € H' , such that |(da,) el = 1 and

dI(d)Al)[h] =Ai2Re <(¢?\1)tr|htr>L2 Vh e Hl.



Let us recall some important inequalities

» Kato inequality: For any \ € H/2

(Wl ) 2 < 2 IV=AW) , < 25 ($IV=PA + mPchy),,

» Tix inequality* for any € HY/?

1 7
(ALBlX T AL), < oo (5 + )ALV =?A 4 m2ctAsb),
Note that if Z < Z. = 124 then ZTEZ(% + %J < 1, hence the positive/negative energy components the

Coulomb potential term are H/2_ bounded. Recall that the Dirac — Coulomb operator is essentially self-adjoint if

Z < 118 ([Schmincke ('72)] ).

Lemma Let p € L1(R3) and ¢ € HY/2

p()P(y)  m
JJR3><R3 X7|y < ?C|p|L1‘1M%_,1/2.

Ix —y

* C. Tix, Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall, Bull; Lon. Math. Soc. (1998)



Sketch of the proof

step 1 Forany W C Xi, dmW =1, there exists ¢, € X\ such
that
Ay = sup Z(d) =Z(¢p,,) >0

beXyy

For any 11 > 0 let define the auxiliary problems

Aw() =sup(Z(dp) b € WE X |belf =n}

e A, (n) > 0 (no vanishing);
e\, >A,(1—38)+A,(d) for any 6 € (0,1) (no dicothomy).

= dZ(d,,)h = A, 2Re((d, ) erlher) 2 Vhe Wo X



step 2 Take v € (CSO(R3) non-negative, radially symmetric and
non-increasing . Let W, = span{w;,} where

(3, y) = &~ n/2 (Vi)

2

I >0: sup Z(p) < me? = 0< A < mc?

beXu,

1
2 2 2
'HWT]HHI_’”C vl =7 %|VV|L2
2
.J Py (¥) znaQJ vl +J Po: o2
r: lyl gyl Jrs Iyl

Por (¥)Pg, (2) v|?
. ” P T @logyln |
R3xR3 ly — 2| r3 |yl

Pon (Y)Pgo(2) 2
+ﬂR3xR3 ly — 2| too Ol




1 1
2 2.2 2 2
I((bn)_mc <n‘a 2m’|VV|/_2_§ H¢2||H1
|vol?

1
—1= ae(2Z—1)J
2 r: 1Yl

—mc®|(d2) /72 + OM?)

step 3 Take W, C Xy a minimizing sequence:

sup Z(¢) =Z(bn) =A,, = M
beXyy,

To(h) = dZ(dn) A — Ay, 2Re((bn)urlber) 2 (Vh € HY)
={ T, (h)=0; VYhe W,®X_
|(<1>n)t,|§2=1; Gin 20  (YneN).



e The sequence (¢,) is bounded in H?

Take hy = (4 ) € Wy & X_ we have

2)\l,n Z}\l,n2 Re<(¢n)tr) (hn)tr>L2 = dz(d)n)[hn]

P,
22l — 2267 O

V4
+ 2”¢2,n”i,1 — 462 JJ M dy dz
R3xR3 ly — 2|

>2(1 —y1)[|b1,nlZn + 201 —v2) [ bo,nll

2 2
where y; = z%%(% + %] < 1 (whenever Z < 124 ) and vy, = 71% < 1/43.



eT,—0in H1

If not Ix, = (%5") € (W, @ X)Xy, Talxn) >0>0.
Let W; = span{d, , — tX1,n} we get for t > 0 sufficiently small

5
sup Z(p) <+ < Agp—t— < AL
beXw, 4

a contradiction.

= sup |dI(¢n)[h] _AWnQ Re<((bn)tr|htr>L2| = 0(1)
heHY: |[hl],q =1

step 4 Let v, = b, — ¢ — 0 then (v,)s — O strongly in L.

{dI(J))[h} = A2Re(Pelhy)2 Vhe H
|d_>tr|i2 =1



o [ps T =0
Take hg, = 0%(y) (") where B is a cut-off function.

On(l) :Tn(hR,n) = dI(‘bn)[hR,n] - 27\1,n Re<(¢n)tr|(hR,n)tr>L2
>2(|0Rv+nl|Fn + 2[10RV-nllFu + 0r(1)

_ 2262 J peRV+ n + 27e J peRV—‘n
R3 R3

lyl lyl
—C|It Fw’eR | 1(vn tr|H1/2 + on(1)
>2(1 = v)||8r V4 nll 71 + 0n(1) + 0r(1)
since |[[U_ L, 0R]|| = og(1) and

” P, () Re(Upt (bn)er, Uy (hR,n)er)l(2)
R3xR3 ly — =l

” S (¥) Re(U M (dn)ers U (B n)er ) (2)
R3 xR3

ly — 2|



e ¢, — ¢ strongly in H! hence in particular IJ)UI%Q =1

Take h, = ( Vn ) since mc? > A1, we get

—V_

0(1) :Tn(hn) = dI(d)n)[hn] - }\1,n2 Re<(¢n)tr|(hn)tr>L2

Pvin
> 2l ol + 2l — 2267 O
R

lyl
42 ” P (¥)Pv_,(2) dy dz
R3xR3

ly — 2|
- 27\1,n|(v+,n)tr|%2 + 0(1)
A
>2(1— 25 B +2(1 —y2) Vol + (1)

mc?



The Virial Theorem for Dirac Equation

The Virial Theorem for the (perturbed) Dirac operator Dy + V
states that if 1 is an eigenfunction then

(] —ice - Vip) = (PIx - VV)

This identity has been proved by Albeverio ('72), Kalf (‘76) and
refined by Leinfelder (‘81).

The Virial Theorem can be used to prove that there is no
eigenvalue for H in the essential spectrum.

We give an alternative proof of the the Virial Theorem under the
same assumptions given by Leinfelder (1981). The proof is based
in a Pohozaev-like identity for (£,), the Neumann problem in RY .



Assumptions on V':
(h1) V € L3 (R3) + L°°(R3) such that

(i) there exists, for almost all x € R3, the limit

V(0x) — V(x)

(i) there exists f € L3 (R3) + L°(R3) and & > 0 such that for
0 —1] <6

[V (0x) — V(x|
BT T < f(x) a.e..

Let us point out that if V is sufficiently regular

im OV Vi) = vV
e a1 [x]0,V(x) = (x, (x)).

and (ii) is slightly more general then
[V(6x) — V(x| c1

< —+0
lo—1  ~ Ix 7

for some c1, ¢p > 0, the assumption one finds in Kalf (1976) and Thaller (1992).



Theorem (Pohozaev-like identity)
Let (h1) holds and let ¢ € H(R%,C*) be a weak solution of
(€,) then setting (ba)y = & and Yy = UF_V\}E;\ we have

J (x|a,V)|1m|2dx=J (ry o pibn) dp.
R3 R3
or, equivalently

A= JR3(|x|arv V) dx + by, Bmc?ba) e



Sketch of the proof

Let ¢y € H! be a (weak) solution of the Neumann problem (&, ),
we have

dZ(pp)lh =A2Re ((a)ulher) ,  Vhe H.

Take
h=U.,DU 1y e H?

FWYFW

where DI = 1(D¢ + D;’%) and for 0 < 6 # 1

0 2f(x,0y) — f(x,y)
DYf(x,y) =8 .
0—1
If f is sufficiently regular we have that
. ) fx,08y) — f(x,¥)
dim, Dy Flx ) = fim, 08 =g = 10 9y ).

After some computations, same estimate and passing to the limit as © — 1 one obtains the result.



To relate the above result with the eigenvalue problem for Dirac
operator and the corresponding (relativistic) Virial Theorem we

need an additional assumption

(h2) Do+ V has a self-adjoint extension H which is the unique
such that its domain D(H) is contained in H/2(R3,C*) and
the corresponding form defined in H1/2(R3,C*) satisfies
Vf € D(H) and Vg € HY/2(R3,C*):

<Hf)g> = QDo(f’g) + QV(f)g)

If (h2) holds then any eigenfunction {, of H with eigenvalue A

satisfies

(Ha, by = E(Pa, h) = Aalh),  Vhe HY2(R3,CH).



Letting &y = U, Wa, the extension on the half-space of &, is a
weak solution of the Neumann boundary value problem (&, ), hence
by the above theorem follows

Theorem. (Relativistic Virial Theorem)

Let (h1)-(h2) hold. Let ) € HY/?(R3;C*) be an eigenfunction of
H, with corresponding eigenvalue A € R. Then

J uxra,V)mFdx:J (Bry cax- pdn) dp
R3 R3
or, equivalently

A= (Hibr ) = jR3(rxa,v T V)[al2 a4 (1, mEBiba) 2.

Hence, in particular
» A < mc? whenever |x]d,V(x) + V(x) <0
» A > —mc? whenever |x|0,V(x) + V(x) > 0.



Remark.

The Dirac-Coulomb operator Dy — y\x\fl is essentially self-adjoint on Cé’o(]R3 \ {0}) and self-adjoint in
HI(IRg,CA) for v < ¢v/3/2 corresponding to a critical value Z = 118. For cv/3/2 < vy < ¢ (Z = 137) there
exists a self-adjoint extension H which is uniquely characterized by the property that the domain is contained in the
Dg-form domain H'/2(R3;C*) and (??) holds, see Schmincke (1972) and in particular Nenciu (1976). As a
consequence, assumption (h2) holds for Dy — \Zl when y € (0, c).

Remark.

The essential spectrum of the free Dirac operator Dy is given by
Gess(Dg) = (Dg) = (—00, —mc?] U [mc?, +00).
It is known (see Nenciu (1976)) that for the Dirac Coulomb operator with v € (0, ¢)
Oess(H) C 0ess(Do)

Hence in particular the Virial Theorem implies the absence of eigenvalues in the essential spectrum for the Coulomb
potential, since for such a potential

[x|Vr(x) + V(x) = (x, VV) + V = 0.



