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The Dirac operator

The (free) Dirac operator is a first order operator acting on

4-spinors Ψ : R3 → C4, given by

D0 = −ic�hα · ∇+mc2β

where c denotes the speed of light, m > 0 the mass of the

electron, and �h the Planck’s constant (from now on �h = 1).

α = (α1,α2,α3) and β are the four Pauli-Dirac 4× 4-matrices, given by

αk =

(
0 σk
σk 0

)
β =

(
I
2

0
0 −I

2

)

and σk (k = 1, 2, 3) are the Pauli 2× 2-matrices.

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)



In Fourier space D0 becomes the multiplication operator given by

D̂(p) = FD0F−1 =

(
mc2I2 cσ · p
cσ · p −mc2I2

)
with eigenvalues

µ1(p) = µ2(p) = −µ3(p) = − µ4(p) =
√
c2|p|2 + c4m2 ≡ µ(p).

The unitary transformation which diagonalize D̂(p) is given by

U(p) = a+(p)I+ a−(p)β
α · p
|p|

; a±(p) =

√
1

2

(
1± mc2

µ(p)

)
.

We have

U(p)D̂(p)U−1(p) = µ(p)β =
√
c2|p|2 +m2c4

(
I2 0

0 −I2

)
.



D0 is essentially self-adjoint and self-adjoint on

D(D0) = H1(R3,C4) with purely absolutely continuous spectrum

σ(D0) = (−∞,−mc2] ∪ [mc2,+∞).

There are two infinite rank orthogonal projectors on L2(R3,C4),

Λ± = F−1U(p)−1

(
I4 ± β

2

)
U(p)F

such that

D0Λ± = Λ±D0 = ±
√

−c2∆+m2c4Λ±

= ±Λ±
√
−c2∆+m2c4

and, denoting H+ = Λ±L
2(R3,C4) the positive/negative energies

subspaces, we have L2(R3,C4) = H+ ⊕H−.



The Foldy-Wouthuysen (unitary) transformation

U
FW

= F−1U(p)F

⇒ Λ±,FW = U
FW
Λ±U

−1
FW

=
I4 ± β

2

Let denote φ =
(
φ+

φ−

)
∈ L2(R3,C2 × C2) we have

positive energy ⇒ 2-upper components ψ+ = U−1
FW

(
φ+
0

)
∈ H+

negative energy ⇒ 2-lower components ψ− = U−1
FW

(
0
φ−

)
∈ H−

D
FW

= U
FW
D0U

−1
FW

=
√

−c2∆+m2c4 β

[see B.Thaller, The Dirac equation, Springer-Verlag, (1992) ]



The operator
√
−c2∆+m2c4 is related to the Dirichlet problem:{

(−∂2
x − c2∆y +m2c4)φ = 0 in R4

+ =
{
(x , y) ∈ R× R3

∣∣ x > 0
}

φ(0, y) = ξ(y) ∈ S(R3) for y ∈ R3 = ∂R4
+.

Indeed, solving the equation via partial Fourier transform we get

φ(x , y) =
1

(2π)3/2

∫
R3

eip·y ξ̂(p)e−x
√

c2|p|2+m2c4
dp.

We define the Dirichlet to Neumann operator T
DN

as follows

T
DN
ξ(y) =

∂φ

∂ν |
∂R4

+

(y) = −
∂φ

∂x
(0, y)

=
1

(2π)3/2

∫
R3

e
ip·y
√
c2|p|2 +m2c4 ξ̂(p) dp,

namely T
DN

=
√

−c2∆y +m2c4 on the dense domain S(R3).



Notation:

H1/2 ≡ H1/2
(R3
,C4

) or H1/2
(R3
,C2

), H1 ≡ H1
(R4

+,C
4
) or H1

(R4
+,C

2
)

‖φ‖2

H1
=

∫∫
R4
+

(|∂xφ|
2 + c2|∇yφ|

2 +m2c4|φ|2) dx dy

|ξ|2
H1/2

=

∫
R3

√
c2|p|2 +m2c4 |ξ̂|2 dp.

Let ξ ∈ H1/2, define the extension of ξ on the half-space R4
+

φ(x , y) = F−1
y (ξ̂(p)e−x

√
c2|p|2+m2c4

) (1)

then φ ∈ H1 and

|ξ|H1/2 = ‖φ‖H1 = inf{‖w‖H1 : wtr = ξ}

mc2

∫
R3

|ξ|2 dy ≤ inf
wtr=ξ

∫∫
R4
+

(|∂xw |2 +m2c4|w |2) dx dy .



Perturbed Dirac operators

We are interested in the perturbed Dirac operators D0 + V ,

V ∈ L3
w (R3) + L∞(R3) being a scalar potential.

Lqw (RN ) denotes the weak Lq space, the space of all measurable functions f such that

supµ>0 µ |{x : |f (x)| > µ}|1/q < +∞,
where | · | denotes the Lebesgue measure, or equivalently, for 1

q
+ 1

r
= 1

‖f ‖q,w = supA |A|−1/r ∫
A |f (x)| < +∞.

The Coulomb potential V (x) = − e2Z
|x|

in L3
w (R3).

Let define the sesquilinear form E : H1/2 × H1/2 → C as follows

E(f , g) =
∫
R3

(f̂ (p), (cα · p +mc2β)ĝ(p))
C4 dp

+

∫
R3

V (x)(f , g)
C4 dx



We look for solutions (ψ, λ) ∈ H1/2 × R of the (weak) equation

E(ψ, h) = λ〈ψ|h〉L2 , ∀h ∈ H1/2.

Equivalently, setting ξ = U
FW
ψ, we look for solutions

(ξ, λ) ∈ H1/2 × R of the (weak) equation

E
FW
(ξ, h) = λ〈ξ|h〉L2 , ∀h ∈ H1/2, (2)

where

E
FW
(ξ, h) =

∫
R3

√
c2|p|2 +m2c4 (ξ̂(p),βĥ(p))

C4 dp

+

∫
R3

V (x)(U−1
FW
ξ,U−1

FW
h)

C4 dx .



The extension on R4
+: the Dirichlet to Neumann operator

Let (ξλ, λ) ∈ H1/2 × R be a solution of (2) and let φλ be the

extension of ξλ on the half-space R4
+ then φλ ∈ H1(R4

+,C4),

(φλ)tr = ξλ and (φλ, λ) is a solution of the Neumann problem
(−∂2

x − c2∆y +m2c4)φλ = 0 in R4
+

β
∂φλ
∂ν |

∂R4
+

= −U
FW
VU−1

FW
ξλ + λξλ on ∂R4

+ = R3.
(E
λ
)

On the other hand, if (φλ, λ) ∈ H1 × R solves the Neumann

problem (E
λ
), setting ξλ = (φλ)tr the trace of φλ, then

(ξλ, λ) ∈ H1/2 is a solution of (2).

[ L. Caffarelli; L. Silvestre, An extension problem related to the fractional Laplacian, Comm. PDE (2007)]



Variational setting

We consider the functional

I(φ) = ‖φ+‖2

H1
− ‖φ−‖2

H1
+

∫
R3

V (y)(U−1
FW
φtr ,U

−1
FW
φtr )C4 dy

where φ =
(
φ+

φ−

)
∈ H1 and φtr ∈ H1/2.

Then (φλ, λ) ∈ H1 × R is a (weak) solution of the Neumann

problem (E
λ
) if and only if

dI(φλ)[h] = λ 2 Re 〈(φλ)tr |htr 〉L2 ∀h ∈ H1.



I Projected Dirac operator: the Brown-Ravenhall Hamiltonian

see S. Morozov S. Vugalter Ann. H. Poincaré (2006) for related pb.; V. Coti Zelati; M.N. NLA (2016),

I Pohozaev identity ⇒ Relativistic virial theorem

see e.g. B.Thaller, The Dirac equation, Springer-Verlag, (1992) ; V. Coti Zelati ; M.N. JFPT (2017)

I Variational characterizations for the (positive) eigenvalues for

• the Dirac-Coulomb problem

(see J. Dolbeaut, M. Esteban, E. Séré Calc.Var. PDE (2000) )

• the Maxwell-Dirac -Coulomb problem

V. Coti Zelati ; M.N. in progress



The Maxwell-Dirac-Coulomb system
The MDC system describes an electron interacting with its own

electromagnetic field (extended particle : Ψ(t, x) = e−iλtψ(x)) and

with a nucleus of atomic number Z

(P)
MDC


−icα · (∇− i ecA)ψ+mc2βψ+ eΦψ+ V

Z
ψ = λψ

−∆Φ = 4πρ ; −∆A = 4π
c J

|ψ|2L2 = 1

where V
Z
= −Ze2

|x | , e = −|e | is the electron charge and (cρ, J) is

the Dirac relativistic current (c∂tρ+∇ · J = 0), given by

ρ = e |ψ|2 J = e(ψ, cαψ)

hence by the Poisson formula we get

⇒ {Φ = ρ ∗ 1
|x | = e |ψ|2 ∗ 1

|x |

A = 1
c J ∗

1
|x | = e(ψ,αψ) ∗ 1

|x |

( see G.M. Coclide, V. Georgiev JDE(2004)) for the Maxwell-Schrödinger-Coulomb eq. ;
see M.Esteban, V. Georgiev, E. Sèrè Calc.Var. PDE (1996)) for stationary solutions of the Maxwell-Dirac eq.)



The MDC (nonlinear) eigenvalues problem
We look for solutions (ψ, λ) ∈ H1/2 × R of the nonlinear equation

(P)
MDC
⇒ {D0ψ+Wintψ = λψ

|ψ|2L2 = 1

where the effective potential Wint ≡ V
Z
+ eΦ− eA · α ∈ L3

w (R3),

indeed |A| ≤ Φ and if ψ ∈ L2 then Φ ∈ L3
w (R3).

In the FW representation we look for (weak) solutions

(φ, λ) ∈ H1 × R of the nonlinear Neumann problem

(E
λ
)



(−∂2
x − c2∆y +m2c4)φ = 0 in R4

+

β
∂φ

∂ν |
∂R4

+

+ U
FW
(V

Z
+ eΦ− eα · A)U−1

FW
φtr = λφtr on ∂R4

+

|φtr |
2
L2 = 1

Φ = e |U−1
FW
φtr |

2 ∗ 1
|x | ; A = e(U−1

FW
φtr ,αU

−1
FW
φtr ) ∗ 1

|x |



Variational setting

We consider the functional I(φ) on H1, φ =
(
φ+

φ−

)
∈ X+ + X−

I(φ) = ‖φ+‖2
H1 − ‖φ−‖2

H1 − Ze2

∫
R3

ρφ(y)

|y |
dy

+
e2

2

∫∫
R3×R3

ρφ(y)ρφ(z) − Jφ(y) · Jφ(z)
|y − z |

dy dz

where ρφ = |U−1
FW
φtr |

2 and Jφ = (U−1
FW
φtr ,αU

−1
FW
φtr ).

(φλ, λ) ∈ H1 × R is a (weak) solution of the Neumann nonlinear

problem (E
λ
) if and only if

dI(φλ)[h] = λ 2 Re 〈(φλ)tr |htr 〉L2 ∀h ∈ H1.



Existence of the “Ground state”

Given W ⊂ X+ a 1-dim vector space, let define

XW = {φ =
(
φ+

φ−

)
∈W ⊕ X− : |φtr |L2 = 1}.

Then we define

λ1 = inf
W⊂X+

dimW=1

sup
φ∈XW

I(φ)

Theorem (“ground state”)

If the atomic number Z < 124 then

I λ1 ∈ (0,mc2)

I there exists φλ1 ∈ H1 , such that |(φλ1)tr |L2 = 1 and

dI(φλ1)[h] = λ1 2 Re 〈(φλ1)tr |htr 〉L2 ∀h ∈ H1.



Let us recall some important inequalities

I Kato inequality: For any ψ ∈ H1/2

〈ψ||x |−1ψ〉
L2 ≤

π

2
〈ψ|
√
−∆ψ〉

L2 ≤
π

2c
〈ψ|
√
−c2∆+m2c4ψ〉

L2

I Tix inequality∗ for any ψ ∈ H1/2

〈Λ±ψ||x |−1Λ±ψ〉L2 ≤
1

2c
(
π

2
+

2

π
)〈Λ±ψ|

√
−c2∆+m2c4Λ±ψ〉L2

Note that if Z < Zc = 124 then Ze2

c
(π

2
+ 2
π
) < 1, hence the positive/negative energy components the

Coulomb potential term are H1/2- bounded. Recall that the Dirac – Coulomb operator is essentially self-adjoint if

Z < 118 ([Schmincke (’72)] ).

Lemma Let ρ ∈ L1(R3) and ψ ∈ H1/2

∫∫
R3×R3

ρ(x)|ψ|2(y)

|x − y |
≤ π

2c
|ρ|L1 |ψ|2H1/2 .

∗ C. Tix, Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall , Bull. Lon. Math. Soc. (1998)



Sketch of the proof

step 1 For any W ⊂ X+, dimW = 1, there exists φ
W
∈ XW such

that

λ
W

= sup
φ∈XW

I(φ) = I(φ
W
) > 0

For any η > 0 let define the auxiliary problems

λ
W
(η) = sup {I(φ) |φ ∈W ⊕ X−; |φtr |

2
L2 = η}

• λ
W
(η) > 0 (no vanishing);

• λ
W
> λ

W
(1 − δ) + λ

W
(δ) for any δ ∈ (0, 1) (no dicothomy).

⇒ dI(φ
W
)[h] = λ

W
2 Re〈(φ

W
)tr |htr 〉L2 ∀ h ∈W ⊕ X−



step 2 Take v ∈ C∞
0 (R3) non-negative, radially symmetric and

non-increasing . Let Wη = span{wη} where

wη(x , y) = e−mc2xη3/2
(

v(ηy)
0

)
∃�η > 0 : sup

φ∈XW
�η

I(φ) < mc2 ⇒ 0 < λ1 < mc2

• ‖wη‖2
H1 −mc2|v |2L2 = η2 1

2m
|∇v |2L2

•
∫
R3

ρφη(y)

|y |
= ηa2

∫
R3

|v |2

|y |
+

∫
R3

ρφ2

|y |
+ O(η2)

•
∫∫

R3×R3

ρφη(y)ρφη(z)

|y − z |
= ηa2|ρφη |L1

∫
R3

|v |2

|y |

+

∫∫
R3×R3

ρφη(y)ρφ2(z)

|y − z |
+ · · ·+ O(η2)



⇒ I(φη) −mc2 ≤ η2a2 1

2m
|∇v |2L2 −

1

2
‖φ2‖2

H1

− η
1

2
a2e2(2Z − 1)

∫
R3

|v0|
2

|y |

−mc2|(φ2)tr |
2
L2 + O(η2)

step 3 Take Wn ⊂ X+ a minimizing sequence:

sup
φ∈XWn

I(φ) = I(φn) = λWn
→ λ1

⇒

Tn(h) = dI(φn)[h] − λWn

2 Re〈(φn)tr |htr 〉L2 (∀h ∈ H1)

Tn(h) = 0; ∀h ∈Wn ⊕ X−

|(φn)tr |
2
L2 = 1; φ+,n 6= 0 (∀n ∈ N).



• The sequence (φn) is bounded in H1

Take hn =
(
φ+,n

−φ−,n

)
∈Wn ⊕ X− we have

2λ1,n ≥λ1,n2 Re〈(φn)tr , (hn)tr 〉L2 = dI(φn)[hn]

≥2‖φ+,n‖2
H1 − 2Ze2

∫
R3

ρφ+,n

|y |

+ 2‖φ2,n‖2
H1 − 4e2

∫∫
R3×R3

ρφn(y)ρφ−,n(z)

|y − z |
dy dz

≥2(1 − γ1)‖φ1,n‖2
H1 + 2(1 − γ2)‖φ2,n‖2

H1

where γ1 = Ze2

c
1
2
(π

2
+ 2
π
) < 1 (whenever Z < 124 ) and γ2 = π e2

c
< 1/43 .



• Tn → 0 in H−1

If not ∃χn = ( χ1,n
0 ) ∈ (Wn ⊕ X−)

⊥ ⊂ X+, Tn(χn) ≥ δ > 0.

Let Wt = span{φ+,n − tχ1,n} we get for t > 0 sufficiently small

sup
φ∈XWt

I(φ) ≤ · · · ≤ λ1,n − t
δ

4
< λ1.

a contradiction.

⇒ sup
h∈H1 : ‖h‖H1=1

|dI(φn)[h] − λWn
2 Re〈(φn)tr |htr 〉L2 | = o(1)

step 4 Let vn = φn − �φ⇀ 0 then (vn)tr → 0 strongly in L2.

⇒ {
dI(�φ)[h] = λ12 Re〈�φtr |htr 〉L2 ∀ h ∈ H1

|�φtr |
2
L2 = 1



•
∫
R3

ρv+,n
|y | → 0

Take hR,n = θ2
R(y)

( v+,n
−v−,n

)
where θR is a cut-off function.

on(1) =Tn(hR,n) = dI(φn)[hR,n] − 2λ1,n Re〈(φn)tr |(hR,n)tr 〉L2

≥2‖θRv+,n‖2
H1 + 2‖θRv−,n‖2

H1 + oR(1)

− 2Ze2

∫
R3

ρθRv+,n
|y |

+ 2Ze2

∫
R3

ρθRv−,n
|y |

− C‖[U−1
FW
, θR ]‖ |(vn)tr |2H1/2 + on(1)

≥2(1 − γ)‖θRv+,n‖2
H1 + on(1) + oR(1)

since ‖[U−1
FW
, θR ]‖ = oR(1) and

∫∫
R3×R3

ρφn (y) Re(U−1
FW

(φn)tr ,U
−1
FW

(hR,n)tr )|(z)

|y − z|
dy dz = on(1)

∫∫
R3×R3

Jφn (y) Re(U−1
FW

(φn)tr ,αU−1
FW

(hR,n)tr )(z)

|y − z|
dy dz = on(1)



• φn → �φ strongly in H1 hence in particular |�φtr |
2
L2 = 1

Take hn =
( v+,n
−v−,n

)
, since mc2 > λ1, we get

o(1) =Tn(hn) = dI(φn)[hn] − λ1,n2 Re〈(φn)tr |(hn)tr 〉L2

≥ 2‖v+,n‖2
H1 + 2‖v−,n‖2

H1 − 2Ze2

∫
R3

ρv+,n
|y |

− 4e2

∫∫
R3×R3

ρφn(y)ρv−,n(z)

|y − z |
dy dz

− 2λ1,n|(v+,n)tr |
2
L2 + o(1)

≥2(1 −
λ1,n

mc2
)‖v+,n‖2

H1 + 2(1 − γ2)‖v−,n‖2
H1 + o(1)



The Virial Theorem for Dirac Equation

The Virial Theorem for the (perturbed) Dirac operator D0 + V

states that if ψ is an eigenfunction then

〈ψ|− icα · ∇ψ〉 = 〈ψ|x · ∇Vψ〉

This identity has been proved by Albeverio (‘72), Kalf (‘76) and

refined by Leinfelder (‘81).

The Virial Theorem can be used to prove that there is no

eigenvalue for H in the essential spectrum.

We give an alternative proof of the the Virial Theorem under the

same assumptions given by Leinfelder (1981). The proof is based

in a Pohozaev-like identity for (E
λ
), the Neumann problem in R4

+ .



Assumptions on V :

(h1) V ∈ L3
w (R3) + L∞(R3) such that

(i) there exists, for almost all x ∈ R3, the limit

lim
θ→1

V (θx) − V (x)

θ− 1
= |x |∂rV (x);

(ii) there exists f ∈ L3
w (R3) + L∞(R3) and δ > 0 such that for

|θ− 1| < δ

|V (θx) − V (x)|

|θ− 1|
≤ f (x) a.e..

Let us point out that if V is sufficiently regular

lim
θ→1

V (θx) − V (x)

θ − 1
= |x|∂rV (x) = (x,∇V (x)).

and (ii) is slightly more general then
|V (θx) − V (x)|

|θ − 1|
≤

c1

|x|
+ c2,

for some c1, c2 > 0, the assumption one finds in Kalf (1976) and Thaller (1992).



Theorem (Pohozaev-like identity)

Let (h1) holds and let φλ ∈ H1(R4
+,C4) be a weak solution of

(E
λ
) then setting (φλ)tr = ξλ and ψλ = U−1

FW
ξλ we have∫

R3

(|x |∂rV )|ψλ|
2 dx =

∫
R3

(ψ̂λ, c α · p ψ̂λ) dp.

or, equivalently

λ =

∫
R3

(|x |∂rV + V )|ψλ|2 dx + 〈ψλ,βmc2ψλ〉L2



Sketch of the proof

Let φλ ∈ H1 be a (weak) solution of the Neumann problem (E
λ
),

we have

dI(φλ)[h] = λ 2 Re 〈(φλ)tr |htr 〉
L2

∀h ∈ H1.

Take

h = U
FW
DθyU−1

FW
φλ ∈ H1

where Dθy = 1
2(D

θ
y + D

1/θ
y ) and for 0 < θ 6= 1

Dθy f (x , y) = θ
2 f (x , θy) − f (x , y)

θ− 1
.

If f is sufficiently regular we have that

lim
θ→1

Dθy f (x, y) = lim
θ→1

θ
2 f (x, θy) − f (x, y)

θ − 1
= (y,∇y f ).

After some computations, same estimate and passing to the limit as θ → 1 one obtains the result.



To relate the above result with the eigenvalue problem for Dirac

operator and the corresponding (relativistic) Virial Theorem we

need an additional assumption

(h2) D0 + V has a self-adjoint extension H which is the unique

such that its domain D(H) is contained in H1/2(R3,C4) and

the corresponding form defined in H1/2(R3,C4) satisfies

∀f ∈ D(H) and ∀g ∈ H1/2(R3,C4):

〈Hf , g〉 = QD0(f , g) +QV (f , g)

If (h2) holds then any eigenfunction ψλ of H with eigenvalue λ

satisfies

〈Hψλ, h〉 = E(ψλ, h) = λ〈ψλ|h〉, ∀h ∈ H1/2(R3,C4).



Letting ξλ = U
FW
ψλ, the extension on the half-space of ξλ is a

weak solution of the Neumann boundary value problem (E
λ
), hence

by the above theorem follows

Theorem. (Relativistic Virial Theorem)

Let (h1)-(h2) hold. Let ψλ ∈ H1/2(R3;C4) be an eigenfunction of

H, with corresponding eigenvalue λ ∈ R. Then∫
R3

(|x |∂rV )|ψλ|
2 dx =

∫
R3

(ψ̂λ, c α · p ψ̂λ) dp

or, equivalently

λ = 〈Hψλ, ψλ〉 =
∫
R3

(|x |∂rV + V )|ψλ|2 dx + 〈ψλ,mc2βψλ〉L2 .

Hence, in particular

I λ ≤ mc2 whenever |x |∂rV (x) + V (x) ≤ 0

I λ ≥ −mc2 whenever |x |∂rV (x) + V (x) ≥ 0.



Remark.
The Dirac-Coulomb operator D0 − γ|x |−1 is essentially self-adjoint on C∞

0 (R3 \ {0}) and self-adjoint in

H1(R3,C4) for γ < c
√

3/2 corresponding to a critical value Z = 118. For c
√

3/2 ≤ γ < c (Z = 137) there
exists a self-adjoint extension H which is uniquely characterized by the property that the domain is contained in the

D0-form domain H1/2(R3;C4) and (??) holds, see Schmincke (1972) and in particular Nenciu (1976). As a
consequence, assumption (h2) holds for D0 − γ

|x| when γ ∈ (0, c).

Remark.
The essential spectrum of the free Dirac operator D0 is given by

σess (D0) = σ(D0) = (−∞,−mc2
] ∪ [mc2

,+∞).

It is known (see Nenciu (1976)) that for the Dirac Coulomb operator with γ ∈ (0, c)

σess (H) ⊆ σess (D0)

Hence in particular the Virial Theorem implies the absence of eigenvalues in the essential spectrum for the Coulomb
potential, since for such a potential

|x|Vr (x) + V (x) = (x,∇V ) + V = 0.


