An alternative approach to the Dirac operator via the Dirichlet to Neumann operator

Margherita Nolasco

DISIM- Università dell' Aquila

Linear and Nonlinear Dirac Equation: advances and open problems

Como, February 8-10, 2017

[joint work with Vittorio Coti Zelati - Università di Napoli Federico II]

The Dirac operator

The (free) Dirac operator is a first order operator acting on 4-spinors $\Psi: \mathbb{R}^3 \to \mathbb{C}^4$, given by

$$D_0 = -ic\hbar\underline{\alpha} \cdot \nabla + mc^2\beta$$

where c denotes the speed of light, m>0 the mass of the electron, and \hbar the Planck's constant (from now on $\hbar=1$).

 $\underline{\alpha}=(\alpha_1,\alpha_2,\alpha_3)$ and β are the four Pauli-Dirac 4 \times 4-matrices, given by

$$\alpha_k = \begin{pmatrix} 0 & \sigma_k \\ \sigma_k & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}$$

and σ_k (k=1,2,3) are the Pauli 2 imes 2-matrices.

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

In Fourier space D_0 becomes the multiplication operator given by

$$\hat{D}(p) = \mathcal{F}D_0\mathcal{F}^{-1} = \begin{pmatrix} mc^2\mathbb{I}_2 & c\underline{\sigma} \cdot p \\ c\underline{\sigma} \cdot p & -mc^2\mathbb{I}_2 \end{pmatrix}$$

with eigenvalues

$$\mu_1(p) = \mu_2(p) = -\mu_3(p) = -\mu_4(p) = \sqrt{c^2|p|^2 + c^4m^2} \equiv \mu(p).$$

The unitary transformation which diagonalize $\hat{D}(p)$ is given by

$$U(p) = a_+(p)\mathbb{I} + a_-(p)eta \, rac{\underline{lpha} \cdot p}{|p|} \, ; \quad a_\pm(p) = \sqrt{rac{1}{2} \left(1 \pm rac{mc^2}{\mu(p)}
ight)}.$$

We have

$$U(p)\hat{D}(p)U^{-1}(p) = \mu(p)\beta = \sqrt{c^2|p|^2 + m^2c^4} \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}.$$

 D_0 is essentially self-adjoint and self-adjoint on $\mathcal{D}(D_0)=H^1(\mathbb{R}^3,\mathbb{C}^4)$ with purely absolutely continuous spectrum

$$\sigma(D_0) = (-\infty, -mc^2] \cup [mc^2, +\infty).$$

There are two infinite rank orthogonal projectors on $L^2(\mathbb{R}^3, \mathbb{C}^4)$,

$$\Lambda_{\pm} = \mathcal{F}^{-1} \mathit{U}(p)^{-1} \left(rac{\mathbb{I}_4 \pm eta}{2}
ight) \mathit{U}(p) \mathcal{F}$$

such that

$$D_0 \Lambda_{\pm} = \Lambda_{\pm} D_0 = \pm \sqrt{-c^2 \Delta + m^2 c^4} \Lambda_{\pm}$$
$$= \pm \Lambda_{\pm} \sqrt{-c^2 \Delta + m^2 c^4}$$

and, denoting $\mathcal{H}_+ = \Lambda_{\pm}L^2(\mathbb{R}^3, \mathbb{C}^4)$ the positive/negative energies subspaces, we have $L^2(\mathbb{R}^3, \mathbb{C}^4) = \mathcal{H}_+ \oplus \mathcal{H}_-$.

The Foldy-Wouthuysen (unitary) transformation

$$\begin{split} U_{\scriptscriptstyle \mathsf{FW}} &= \mathcal{F}^{-1} U(\rho) \mathcal{F} \\ \Rightarrow \qquad \Lambda_{\pm,_{\mathit{FW}}} &= U_{\scriptscriptstyle \mathsf{FW}} \Lambda_{\pm} U_{\scriptscriptstyle \mathsf{FW}}^{-1} = \frac{\mathbb{I}_4 \pm \beta}{2} \end{split}$$

Let denote
$$\phi = \begin{pmatrix} \phi_+ \\ \phi_- \end{pmatrix} \in L^2(\mathbb{R}^3, \mathbb{C}^2 \times \mathbb{C}^2)$$
 we have
$$\begin{aligned} & \textit{positive energy} \Rightarrow 2\text{-}\textit{upper} \text{ components } \psi_+ = U_{\scriptscriptstyle FW}^{-1} \begin{pmatrix} \phi_+ \\ 0 \end{pmatrix} \in \mathcal{H}_+ \\ & \textit{negative energy} \Rightarrow 2\text{-}\textit{lower} \text{ components } \psi_- = U_{\scriptscriptstyle FW}^{-1} \begin{pmatrix} 0 \\ \phi_- \end{pmatrix} \in \mathcal{H}_- \end{aligned}$$

$$D_{_{\mathrm{FW}}} = U_{_{\mathrm{FW}}} D_0 U_{_{\mathrm{FW}}}^{-1} = \sqrt{-c^2 \Delta + m^2 c^4} \, \beta$$

[see B.Thaller, The Dirac equation, Springer-Verlag, (1992)]

The operator $\sqrt{-c^2\Delta + m^2c^4}$ is related to the Dirichlet problem:

$$\begin{cases} (-\partial_x^2 - c^2 \Delta_y + m^2 c^4) \varphi = 0 & \text{in } \mathbb{R}_+^4 = \left\{ \, (x,y) \in \mathbb{R} \times \mathbb{R}^3 \; \middle| \; x > 0 \, \right\} \\ \varphi(0,y) = \xi(y) \in \mathcal{S}(\mathbb{R}^3) & \text{for } y \in \mathbb{R}^3 = \partial \mathbb{R}_+^4. \end{cases}$$

Indeed, solving the equation via partial Fourier transform we get

$$\phi(x,y) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} e^{ip \cdot y} \hat{\xi}(p) e^{-x\sqrt{c^2|p|^2 + m^2c^4}} dp.$$

We define the Dirichlet to Neumann operator \mathcal{T}_{DN} as follows

$$\begin{split} \mathcal{T}_{DN}\xi(y) &= \frac{\partial \Phi}{\partial \nu}_{|_{\partial \mathbb{R}^4_+}}(y) = -\frac{\partial \Phi}{\partial x}(0,y) \\ &= \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} \mathrm{e}^{ip\cdot y} \sqrt{c^2 |p|^2 + m^2 c^4} \, \hat{\xi}(p) \, dp, \end{split}$$

namely $\mathcal{T}_{DN} = \sqrt{-c^2 \Delta_y + m^2 c^4}$ on the dense domain $\mathcal{S}(\mathbb{R}^3)$.

Notation:

$${\it H}^{1/2} \equiv {\it H}^{1/2}(\mathbb{R}^3,\mathbb{C}^4) \text{ or } {\it H}^{1/2}(\mathbb{R}^3,\mathbb{C}^2), \qquad {\it H}^1 \equiv {\it H}^1(\mathbb{R}^4_+,\mathbb{C}^4) \text{ or } {\it H}^1(\mathbb{R}^4_+,\mathbb{C}^2)$$

$$\|\phi\|_{H^{1}}^{2} = \iint_{\mathbb{R}^{4}_{+}} (|\partial_{x}\phi|^{2} + c^{2}|\nabla_{y}\phi|^{2} + m^{2}c^{4}|\phi|^{2}) dx dy$$
$$|\xi|_{H^{1/2}}^{2} = \int_{\mathbb{R}^{3}} \sqrt{c^{2}|p|^{2} + m^{2}c^{4}} |\hat{\xi}|^{2} dp.$$

Let $\xi \in H^{1/2}$, define the extension of ξ on the half-space \mathbb{R}^4_+

$$\phi(x,y) = \mathcal{F}_y^{-1}(\hat{\xi}(p)e^{-x\sqrt{c^2|p|^2 + m^2c^4}})$$
 (1)

then $\phi \in H^1$ and

$$|\xi|_{H^{1/2}} = ||\phi||_{H^1} = \inf\{||w||_{H^1} : w_{\mathsf{tr}} = \xi\}$$

$$mc^2 \int_{\mathbb{R}^3} |\xi|^2 dy \le \inf_{w_{tr} = \xi} \iint_{\mathbb{R}^4} (|\partial_x w|^2 + m^2 c^4 |w|^2) dx dy.$$

Perturbed Dirac operators

We are interested in the perturbed Dirac operators $D_0 + V$, $V \in L^3_w(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$ being a scalar potential.

 $L^q_w(\mathbb{R}^N)$ denotes the weak L^q space, the space of all measurable functions f such that

$$\sup\nolimits_{\,\mu\,>\,0}\,\mu\,|\{x\,:\,|f(x)|\,>\,\mu\}|^{1/\,q}\,<\,+\infty,$$

where $|\,\cdot\,|$ denotes the Lebesgue measure, or equivalently, for $\frac{1}{q}+\frac{1}{r}=1$

$$||f||_{q,w} = \sup_A |A|^{-1/r} \int_A |f(x)| < +\infty.$$

The Coulomb potential $V(x) = - rac{e^2 Z}{|x|}$ in $L^3_w(\mathbb{R}^3)$.

Let define the sesquilinear form $\mathcal{E}:H^{1/2}\times H^{1/2}\to \mathbb{C}$ as follows

$$\mathcal{E}(f,g) = \int_{\mathbb{R}^3} (\hat{f}(p), (c\underline{\alpha} \cdot p + mc^2 \beta) \hat{g}(p))_{\mathbb{C}^4} dp$$
$$+ \int_{\mathbb{R}^3} V(x)(f,g)_{\mathbb{C}^4} dx$$

We look for solutions $(\psi,\lambda)\in H^{1/2} imes\mathbb{R}$ of the (weak) equation

$$\mathcal{E}(\psi,h) = \lambda \langle \psi | h \rangle_{L^2}, \quad \forall h \in H^{1/2}.$$

Equivalently, setting $\xi = U_{\text{FW}} \psi$, we look for solutions $(\xi, \lambda) \in H^{1/2} \times \mathbb{R}$ of the (weak) equation

$$\mathcal{E}_{\mathsf{FW}}(\xi, h) = \lambda \langle \xi | h \rangle_{L^2}, \qquad \forall h \in H^{1/2},$$
 (2)

where

$$\begin{split} \mathcal{E}_{\text{FW}}(\xi,h) = & \int_{\mathbb{R}^{3}} \sqrt{c^{2}|p|^{2} + m^{2}c^{4}} \, \left(\hat{\xi}(p), \beta \, \hat{h}(p) \right)_{\mathbb{C}^{4}} \, dp \\ & + \int_{\mathbb{R}^{3}} V(x) (U_{\text{FW}}^{-1} \xi, U_{\text{FW}}^{-1} h)_{\mathbb{C}^{4}} \, dx. \end{split}$$

The extension on \mathbb{R}^4_+ : the Dirichlet to Neumann operator

Let $(\xi_{\lambda}, \lambda) \in H^{1/2} \times \mathbb{R}$ be a solution of (2) and let φ_{λ} be the extension of ξ_{λ} on the half-space \mathbb{R}^4_+ then $\varphi_{\lambda} \in H^1(\mathbb{R}^4_+, \mathbb{C}^4)$, $(\varphi_{\lambda})_{tr} = \xi_{\lambda}$ and $(\varphi_{\lambda}, \lambda)$ is a solution of the Neumann problem

$$\begin{cases} (-\partial_x^2 - c^2 \Delta_y + m^2 c^4) \varphi_{\lambda} = 0 & \text{in } \mathbb{R}_+^4 \\ \beta \frac{\partial \varphi_{\lambda}}{\partial \nu}\Big|_{\partial \mathbb{R}_+^4} = -U_{\text{FW}} V U_{\text{FW}}^{-1} \xi_{\lambda} + \lambda \xi_{\lambda} & \text{on } \partial \mathbb{R}_+^4 = \mathbb{R}^3. \end{cases}$$
 (\mathcal{E}_{λ})

On the other hand, if $(\phi_{\lambda}, \lambda) \in H^1 \times \mathbb{R}$ solves the Neumann problem (\mathcal{E}_{λ}) , setting $\xi_{\lambda} = (\phi_{\lambda})_{tr}$ the trace of ϕ_{λ} , then $(\xi_{\lambda}, \lambda) \in H^{1/2}$ is a solution of (2).

[L. Caffarelli; L. Silvestre, An extension problem related to the fractional Laplacian, Comm. PDE (2007)]

Variational setting

We consider the functional

$$\mathcal{I}(\phi) = \|\phi_+\|_{H^1}^2 - \|\phi_-\|_{H^1}^2 + \int_{\mathbb{R}^3} V(y) (U_{\mathsf{FW}}^{-1} \phi_{tr}, U_{\mathsf{FW}}^{-1} \phi_{tr})_{\mathbb{C}^4} dy$$

where $\varphi = \left(\begin{smallmatrix} \varphi_+ \\ \varphi_- \end{smallmatrix} \right) \in H^1$ and $\varphi_{tr} \in H^{1/2}.$

Then $(\phi_{\lambda}, \lambda) \in H^1 \times \mathbb{R}$ is a (weak) solution of the *Neumann problem* (\mathcal{E}_{λ}) if and only if

$$d\mathcal{I}(\phi_{\lambda})[h] = \lambda 2 \operatorname{Re} \langle (\phi_{\lambda})_{tr} | h_{tr} \rangle_{L^{2}} \quad \forall h \in H^{1}.$$

- Projected Dirac operator: the Brown-Ravenhall Hamiltonian
 see S. Morozov S. Vugalter Ann. H. Poincaré (2006) for related pb.; V. Coti Zelati; M.N. NLA (2016),
- ► Pohozaev identity ⇒ Relativistic virial theorem

 see e.g. B.Thaller, *The Dirac equation*, Springer-Verlag, (1992); V. Coti Zelati; M.N. *JFPT* (2017)
- Variational characterizations for the (positive) eigenvalues for
 - the Dirac-Coulomb problem
 (see J. Dolbeaut, M. Esteban, E. Séré Calc. Var. PDE (2000))
 - the Maxwell-Dirac -Coulomb problem
 V. Coti Zelati ; M.N. in progress

The Maxwell-Dirac-Coulomb system

The MDC system describes an electron interacting with its own electromagnetic field (extended particle: $\Psi(t,x)=\mathrm{e}^{-i\lambda t}\psi(x)$) and with a nucleus of atomic number Z

$$\begin{split} \left(\mathcal{P}\right)_{\text{\tiny MDC}} & \begin{cases} -ic\underline{\alpha}\cdot(\nabla-i\frac{e}{c}\underline{A})\psi + \textit{mc}^2\beta\psi + e\Phi\psi + \textit{V}_{\textit{Z}}\psi = \lambda\psi \\ -\Delta\Phi = 4\pi\rho\,; & -\Delta\underline{A} = \frac{4\pi}{c}\underline{\textit{J}} \\ |\psi|_{\textit{L}^2}^2 = 1 \end{cases}$$

where $V_Z = -\frac{Ze^2}{|x|}$, e = -|e| is the electron charge and $(c\rho, \underline{J})$ is the *Dirac relativistic current* $(c\partial_t \rho + \nabla \cdot \underline{J} = 0)$, given by

$$\rho = e|\psi|^2 \qquad \qquad \underline{J} = e(\psi, c\underline{\alpha}\psi)$$

hence by the Poisson formula we get

$$\Rightarrow \begin{cases} \Phi = \rho * \frac{1}{|x|} = e|\psi|^2 * \frac{1}{|x|} \\ \underline{A} = \frac{1}{c} \underline{J} * \frac{1}{|x|} = e(\psi, \underline{\alpha}\psi) * \frac{1}{|x|} \end{cases}$$

The MDC (nonlinear) eigenvalues problem

We look for solutions $(\psi, \lambda) \in H^{1/2} \times \mathbb{R}$ of the nonlinear equation

$$\left(\mathcal{P}
ight)_{ extit{MDC}} \Rightarrow egin{cases} D_0 \psi + W_{ extit{int}} \psi = \lambda \psi \ |\psi|_{L^2}^2 = 1 \end{cases}$$

where the effective potential $W_{int} \equiv V_Z + e\Phi - e\underline{A} \cdot \underline{\alpha} \in L^3_w(\mathbb{R}^3)$, indeed $|\underline{A}| \leq \Phi$ and if $\psi \in L^2$ then $\Phi \in L^3_w(\mathbb{R}^3)$.

In the FW representation we look for (weak) solutions $(\phi, \lambda) \in H^1 \times \mathbb{R}$ of the *nonlinear Neumann problem*

$$(\mathcal{E}_{\lambda}) \begin{cases} (-\partial_{x}^{2}-c^{2}\Delta_{y}+m^{2}c^{4})\varphi = 0 & \text{in } \mathbb{R}_{+}^{4} \\ \beta\frac{\partial\varphi}{\partial\nu}_{|_{\partial\mathbb{R}_{+}^{4}}} + U_{\mathrm{FW}}(V_{Z}+e\Phi-e\underline{\alpha}\cdot\underline{A})U_{\mathrm{FW}}^{-1}\varphi_{tr} = \lambda\varphi_{tr} & \text{on } \partial\mathbb{R}_{+}^{4} \\ |\varphi_{tr}|_{L^{2}}^{2} = 1 \\ \Phi = e|U_{\mathrm{FW}}^{-1}\varphi_{tr}|^{2}*\frac{1}{|\mathbf{x}|}; & \underline{A} = e(U_{\mathrm{FW}}^{-1}\varphi_{tr},\underline{\alpha}U_{\mathrm{FW}}^{-1}\varphi_{tr})*\frac{1}{|\mathbf{x}|} \end{cases}$$

Variational setting

We consider the functional $\mathcal{I}(\phi)$ on H^1 , $\phi = \begin{pmatrix} \phi_+ \\ \phi_- \end{pmatrix} \in X_+ + X_-$

$$\mathcal{I}(\phi) = \|\phi_{+}\|_{H^{1}}^{2} - \|\phi_{-}\|_{H^{1}}^{2} - Ze^{2} \int_{\mathbb{R}^{3}} \frac{\rho_{\phi}(y)}{|y|} dy$$
$$+ \frac{e^{2}}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{\phi}(y)\rho_{\phi}(z) - J_{\phi}(y) \cdot J_{\phi}(z)}{|y - z|} dy dz$$

where $\rho_{\varphi} = |U_{\scriptscriptstyle \sf FW}^{-1} \varphi_{\scriptscriptstyle tr}|^2$ and $J_{\varphi} = (U_{\scriptscriptstyle \sf FW}^{-1} \varphi_{\scriptscriptstyle tr}, \underline{\alpha} U_{\scriptscriptstyle \sf FW}^{-1} \varphi_{\scriptscriptstyle tr})$.

 $(\phi_{\lambda},\lambda)\in H^1 imes\mathbb{R}$ is a (weak) solution of the *Neumann nonlinear problem* (\mathcal{E}_{λ}) if and only if

$$d\mathcal{I}(\phi_{\lambda})[h] = \lambda 2 \operatorname{Re} \langle (\phi_{\lambda})_{tr} | h_{tr} \rangle_{L^{2}} \quad \forall h \in H^{1}.$$

Existence of the "Ground state"

Given $W \subset X_+$ a 1-dim vector space, let define

$$\mathcal{X}_W = \{ \varphi = \left(egin{array}{c} \varphi_+ \ \varphi_- \end{array}
ight) \in W \oplus X_- \, : \, |\varphi_{tr}|_{L^2} = 1 \}.$$

Then we define

$$\lambda_1 = \inf_{\substack{W \subset X_+ \\ dimW = 1}} \sup_{\varphi \in \mathcal{X}_W} \mathcal{I}(\varphi)$$

Theorem ("ground state")

If the atomic number Z < 124 then

- ▶ $\lambda_1 \in (0, mc^2)$
- there exists $\phi_{\lambda_1} \in H^1$, such that $|(\phi_{\lambda_1})_{tr}|_{L^2} = 1$ and

$$d\mathcal{I}(\phi_{\lambda_1})[h] = \lambda_1 2 \operatorname{Re} \langle (\phi_{\lambda_1})_{tr} | h_{tr} \rangle_{L^2} \qquad \forall h \in H^1.$$

Let us recall some important inequalities

► *Kato inequality:* For any $\psi \in H^{1/2}$

$$\left\langle \psi||x|^{-1}\psi\right\rangle_{\mathit{L}^{2}}\leq\frac{\pi}{2}\left\langle \psi|\sqrt{-\Delta}\psi\right\rangle_{\mathit{L}^{2}}\leq\frac{\pi}{2c}\left\langle \psi|\sqrt{-c^{2}\Delta+\mathit{m}^{2}\mathit{c}^{4}}\psi\right\rangle_{\mathit{L}^{2}}$$

► Tix inequality* for any $\psi \in H^{1/2}$

$$\left\langle \Lambda_{\pm}\psi||x|^{-1}\Lambda_{\pm}\psi\right\rangle_{L^{2}} \leq \frac{1}{2c}(\frac{\pi}{2} + \frac{2}{\pi})\left\langle \Lambda_{\pm}\psi|\sqrt{-c^{2}\Delta + m^{2}c^{4}}\Lambda_{\pm}\psi\right\rangle_{L^{2}}$$

Note that if $Z < Z_c = 124$ then $\frac{Ze^2}{c} (\frac{\pi}{2} + \frac{2}{\pi}) < 1$, hence the positive/negative energy components the Coulomb potential term are $H^{1/2}$ - bounded. Recall that the Dirac – Coulomb operator is essentially self-adjoint if Z < 118 ([Schmincke ('72)]).

Lemma Let $\rho \in L^1(\mathbb{R}^3)$ and $\psi \in H^{1/2}$

$$\iint_{\mathbb{R}^{3}\times\mathbb{R}^{3}} \frac{\rho(x)|\psi|^{2}(y)}{|x-y|} \leq \frac{\pi}{2c} |\rho|_{L^{1}} |\psi|_{H^{1/2}}^{2}.$$

^{*} C. Tix, Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall, Bull, Lon. Math., Soc. (1998)

Sketch of the proof

step 1 For any $W\subset X_+$, dimW=1, there exists $\varphi_W\in \mathcal{X}_W$ such that

For any $\eta > 0$ let define the auxiliary problems

$$\lambda_W(\eta) = \sup\{\mathcal{I}(\varphi) \mid \varphi \in W \oplus X_-; \quad |\varphi_{tr}|_{L^2}^2 = \eta\}$$

- $\lambda_{W}(\eta) > 0$ (no vanishing);
- $\lambda_{_W} > \lambda_{_W}(1-\delta) + \lambda_{_W}(\delta)$ for any $\delta \in (0,1)$ (no dicothomy).

$$\Rightarrow d\mathcal{I}(\phi_w)[h] = \lambda_w 2 \operatorname{Re}\langle (\phi_w)_{tr} | h_{tr} \rangle_{L^2} \quad \forall h \in W \oplus X_-$$

step 2 Take $v \in \mathbb{C}_0^\infty(\mathbb{R}^3)$ non-negative, radially symmetric and non-increasing . Let $W_\eta = \operatorname{span}\{w_\eta\}$ where

$$\begin{split} w_{\eta}(x,y) &= \mathrm{e}^{-mc^2x} \eta^{3/2} \left(\begin{smallmatrix} v(\eta y) \\ 0 \end{smallmatrix}\right) \\ \exists \bar{\eta} > 0: \quad \sup_{\varphi \in \mathcal{X}_{W_{\bar{\eta}}}} \mathcal{I}(\varphi) < mc^2 \ \Rightarrow \ 0 < \lambda_1 < mc^2 \end{split}$$

•
$$\|w_{\eta}\|_{H^{1}}^{2} - mc^{2}|v|_{L^{2}}^{2} = \eta^{2} \frac{1}{2m} |\nabla v|_{L^{2}}^{2}$$

• $\int_{\mathbb{R}^{3}} \frac{\rho_{\phi_{\eta}}(y)}{|y|} = \eta a^{2} \int_{\mathbb{R}^{3}} \frac{|v|^{2}}{|y|} + \int_{\mathbb{R}^{3}} \frac{\rho_{\phi_{2}}}{|y|} + O(\eta^{2})$
• $\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{\phi_{\eta}}(y)\rho_{\phi_{\eta}}(z)}{|y-z|} = \eta a^{2} |\rho_{\phi_{\eta}}|_{L^{1}} \int_{\mathbb{R}^{3}} \frac{|v|^{2}}{|y|} + \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{\phi_{\eta}}(y)\rho_{\phi_{2}}(z)}{|y-z|} + \dots + O(\eta^{2})$

$$\Rightarrow \mathcal{I}(\phi_{\eta}) - mc^{2} \leq \eta^{2} a^{2} \frac{1}{2m} |\nabla v|_{L^{2}}^{2} - \frac{1}{2} \|\phi_{2}\|_{H^{1}}^{2}$$

$$- \eta \frac{1}{2} a^{2} e^{2} (2Z - 1) \int_{\mathbb{R}^{3}} \frac{|v_{0}|^{2}}{|y|}$$

$$- mc^{2} |(\phi_{2})_{tr}|_{L^{2}}^{2} + O(\eta^{2})$$

step 3 Take $W_n \subset X_+$ a minimizing sequence:

$$\sup_{\varphi \in \mathcal{X}_{W_n}} \mathcal{I}(\varphi) = \mathcal{I}(\varphi_n) = \lambda_{_{W_n}} \to \lambda_1$$

$$\Rightarrow \begin{cases} T_n(h) = d\mathcal{I}(\varphi_n)[h] - \lambda_{\mathcal{W}_n} 2\operatorname{Re}\langle (\varphi_n)_{tr}|h_{tr}\rangle_{L^2} & (\forall h \in H^1) \\ T_n(h) = 0; & \forall h \in \mathcal{W}_n \oplus X_- \\ |(\varphi_n)_{tr}|_{L^2}^2 = 1; & \varphi_{+,n} \neq 0 & (\forall n \in \mathbb{N}). \end{cases}$$

• The sequence (ϕ_n) is bounded in H^1

Take
$$h_n = \left(egin{array}{c} \varphi_{+,n} \ -\varphi_{-,n} \end{array}
ight) \in W_n \oplus X_-$$
 we have

$$\begin{split} 2\lambda_{1,n} \geq & \lambda_{1,n} 2 \operatorname{Re} \langle (\varphi_n)_{tr}, (h_n)_{tr} \rangle_{L^2} = d\mathcal{I}(\varphi_n)[h_n] \\ \geq & 2\|\varphi_{+,n}\|_{H^1}^2 - 2Ze^2 \int_{\mathbb{R}^3} \frac{\rho_{\varphi_{+,n}}}{|y|} \\ & + 2\|\varphi_{2,n}\|_{H^1}^2 - 4e^2 \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{\rho_{\varphi_n}(y)\rho_{\varphi_{-,n}}(z)}{|y-z|} \, dy \, dz \\ \geq & 2(1-\gamma_1)\|\varphi_{1,n}\|_{H^1}^2 + 2(1-\gamma_2)\|\varphi_{2,n}\|_{H^1}^2 \end{split}$$

where $\gamma_1=\frac{Ze^2}{c}\frac{1}{2}(\,\frac{\pi}{2}+\frac{2}{\pi}\,)<1$ (whenever Z<124) and $\gamma_2=\pi\frac{e^2}{c}<1/43$.

• $T_n \rightarrow 0$ in H^{-1}

If not $\exists \chi_n = ({\chi_1,n \atop 0}) \in (W_n \oplus X_-)^\perp \subset X_+, \ T_n(\chi_n) \ge \delta > 0.$ Let $W_t = \operatorname{span}\{\varphi_{+,n} - t\chi_{1,n}\}$ we get for t > 0 sufficiently small

$$\sup_{\varphi \in \mathcal{X}_{\mathcal{W}_t}} \mathcal{I}(\varphi) \leq \cdots \leq \lambda_{1,n} - t \frac{\delta}{4} < \lambda_1.$$

a contradiction.

$$\Rightarrow \sup_{h \in H^1: \|h\|_{H^1} = 1} |\frac{d\mathcal{I}(\varphi_n)[h] - \lambda_{W_n} 2\operatorname{Re}\langle (\varphi_n)_{tr} |h_{tr}\rangle_{L^2}| = o(1)$$

step 4 Let $v_n = \varphi_n - \overline{\varphi} \rightharpoonup 0$ then $(v_n)_{tr} \rightarrow 0$ strongly in L^2 .

$$\Rightarrow \begin{cases} d\mathcal{I}(\bar{\varphi})[h] = \lambda_1 2 \operatorname{Re}\langle \bar{\varphi}_{tr} | h_{tr} \rangle_{L^2} & \forall h \in H^1 \\ |\bar{\varphi}_{tr}|_{L^2}^2 = 1 \end{cases}$$

$$\bullet \ \int_{\mathbb{R}^3} \frac{\rho_{\nu_+,n}}{|y|} \to 0$$

Take $h_{R,n} = \theta_R^2(y) \begin{pmatrix} v_{+,n} \\ -v_{-,n} \end{pmatrix}$ where θ_R is a cut-off function.

$$\begin{split} o_n(1) = & T_n(h_{R,n}) = d\mathcal{I}(\varphi_n)[h_{R,n}] - 2\lambda_{1,n} \operatorname{Re}\langle(\varphi_n)_{tr}|(h_{R,n})_{tr}\rangle_{L^2} \\ \geq & 2\|\theta_R v_{+,n}\|_{H^1}^2 + 2\|\theta_R v_{-,n}\|_{H^1}^2 + o_R(1) \\ & - 2Ze^2 \int_{\mathbb{R}^3} \frac{\rho_{\theta_R v_{+,n}}}{|y|} + 2Ze^2 \int_{\mathbb{R}^3} \frac{\rho_{\theta_R v_{-,n}}}{|y|} \\ & - C\|[U_{\text{FW}}^{-1}, \theta_R]\| \, |(v_n)_{tr}|_{H^{1/2}}^2 + o_n(1) \\ \geq & 2(1-\gamma)\|\theta_R v_{+,n}\|_{H^1}^2 + o_n(1) + o_R(1) \end{split}$$

since
$$||[U_{EW}^{-1}, \theta_R]|| = o_R(1)$$
 and

$$\begin{split} &\iint_{\mathbb{R}^3\times\mathbb{R}^3} \frac{\rho_{\,\varphi_{\,n}}(y)\,\text{Re}(U_{FW}^{-1}(\varphi_n)_{tr},U_{FW}^{-1}(h_{R,n})_{tr})|(z)}{|y-z|}\,\text{d}y\,\text{d}z = o_n(1)\\ &\iint_{\mathbb{R}^3\times\mathbb{R}^3} \frac{J_{\,\varphi_{\,n}}(y)\,\text{Re}(U_{FW}^{-1}(\varphi_n)_{tr},\underline{\alpha}U_{FW}^{-1}(h_{R,n})_{tr})(z)}{|y-z|}\,\text{d}y\,\text{d}z = o_n(1) \end{split}$$

ullet $\Phi_n
ightarrow ar{\Phi}$ strongly in H^1 hence in particular $|ar{\Phi}_{tr}|_{L^2}^2 = 1$

Take $h_n = \binom{v_{+,n}}{-v_{-,n}}$, since $mc^2 > \lambda_1$, we get

$$\begin{split} o(1) = & T_{n}(h_{n}) = d\mathcal{I}(\varphi_{n})[h_{n}] - \lambda_{1,n} 2 \operatorname{Re}\langle(\varphi_{n})_{tr}|(h_{n})_{tr}\rangle_{L^{2}} \\ & \geq 2\|v_{+,n}\|_{H^{1}}^{2} + 2\|v_{-,n}\|_{H^{1}}^{2} - 2Ze^{2} \int_{\mathbb{R}^{3}} \frac{\rho_{v_{+,n}}}{|y|} \\ & - 4e^{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{\varphi_{n}}(y)\rho_{v_{-,n}}(z)}{|y-z|} \, dy \, dz \\ & - 2\lambda_{1,n}|(v_{+,n})_{tr}|_{L^{2}}^{2} + o(1) \\ & \geq & 2(1 - \frac{\lambda_{1,n}}{mc^{2}})\|v_{+,n}\|_{H^{1}}^{2} + 2(1 - \gamma_{2})\|v_{-,n}\|_{H^{1}}^{2} + o(1) \end{split}$$

The Virial Theorem for Dirac Equation

The *Virial Theorem* for the (perturbed) Dirac operator $D_0 + V$ states that if ψ is an eigenfunction then

$$\langle \psi | -ic\underline{\alpha} \cdot \nabla \psi \rangle = \langle \psi | x \cdot \nabla V \psi \rangle$$

This identity has been proved by Albeverio ('72), Kalf ('76) and refined by Leinfelder ('81).

The Virial Theorem can be used to prove that there is no eigenvalue for H in the essential spectrum.

We give an alternative proof of the the Virial Theorem under the same assumptions given by Leinfelder (1981). The proof is based in a *Pohozaev-like identity* for (\mathcal{E}_{λ}) , the Neumann problem in \mathbb{R}^4_+ .

Assumptions on V:

- (h1) $V \in L^3_w(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$ such that
 - (i) there exists, for almost all $x \in \mathbb{R}^3$, the limit

$$\lim_{\theta \to 1} \frac{V(\theta x) - V(x)}{\theta - 1} = |x| \partial_r V(x);$$

(ii) there exists $f\in L^3_w(\mathbb{R}^3)+L^\infty(\mathbb{R}^3)$ and $\delta>0$ such that for $|\theta-1|<\delta$

$$\frac{|V(\theta x) - V(x)|}{|\theta - 1|} \le f(x) \quad \text{a.e.}.$$

Let us point out that if V is sufficiently regular

$$\lim_{\theta \to 1} \frac{V(\theta x) - V(x)}{\theta - 1} = |x| \partial_r V(x) = (x, \nabla V(x)).$$

and (ii) is slightly more general then

$$\frac{|V(\theta x)-V(x)|}{|\theta-1|}\leq \frac{c_1}{|x|}+c_2,$$

for some $c_1, c_2 > 0$, the assumption one finds in Kalf (1976) and Thaller (1992).

Theorem (Pohozaev-like identity)

Let $(\mathbf{h1})$ holds and let $\phi_{\lambda} \in H^1(\mathbb{R}^4_+, \mathbb{C}^4)$ be a weak solution of (\mathcal{E}_{λ}) then setting $(\phi_{\lambda})_{tr} = \xi_{\lambda}$ and $\psi_{\lambda} = U_{\text{FW}}^{-1} \xi_{\lambda}$ we have

$$\int_{\mathbb{R}^3} (|x| \partial_r V) |\psi_{\lambda}|^2 dx = \int_{\mathbb{R}^3} (\hat{\psi}_{\lambda}, c \,\underline{\alpha} \cdot p \,\hat{\psi}_{\lambda}) dp.$$

or, equivalently

$$\lambda = \int_{\mathbb{R}^3} (|x| \partial_r V + V) |\psi_{\lambda}|^2 dx + \langle \psi_{\lambda}, \beta mc^2 \psi_{\lambda} \rangle_{L^2}$$

Sketch of the proof

Let $\varphi_{\lambda} \in H^1$ be a (weak) solution of the Neumann problem (\mathcal{E}_{λ}) , we have

$$d\mathcal{I}(\varphi_{\lambda})[h] = \lambda 2 \operatorname{Re} \langle (\varphi_{\lambda})_{tr} | h_{tr} \rangle_{L^{2}} \qquad \forall h \in H^{1}.$$

Take

$$h = U_{\scriptscriptstyle \mathsf{FW}} \mathcal{D}_y^{\theta} U_{\scriptscriptstyle \mathsf{FW}}^{-1} \varphi_{\lambda} \in H^1$$

where $\mathcal{D}_y^{ heta} = \frac{1}{2}(D_y^{ heta} + D_y^{1/ heta})$ and for 0 < heta
eq 1

$$D_{y}^{\theta}f(x,y) = \theta^{2} \frac{f(x,\theta y) - f(x,y)}{\theta - 1}.$$

If f is sufficiently regular we have that

$$\lim_{\theta \to 1} D_y^{\theta} f(x, y) = \lim_{\theta \to 1} \theta^2 \frac{f(x, \theta y) - f(x, y)}{\theta - 1} = (y, \nabla_y f).$$

After some computations, same estimate and passing to the limit as $\theta \to 1$ one obtains the result.

To relate the above result with the eigenvalue problem for Dirac operator and the corresponding (relativistic) Virial Theorem we need an *additional assumption*

(h2) $D_0 + V$ has a self-adjoint extension H which is the unique such that its domain $\mathcal{D}(H)$ is contained in $H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$ and the corresponding form defined in $H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$ satisfies $\forall f \in \mathcal{D}(H)$ and $\forall g \in H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$:

$$\langle Hf,g\rangle = \mathcal{Q}_{D_0}(f,g) + \mathcal{Q}_V(f,g)$$

If (h2) holds then any eigenfunction ψ_{λ} of H with eigenvalue λ satisfies

$$\langle H\psi_{\lambda}, h \rangle = \mathcal{E}(\psi_{\lambda}, h) = \lambda \langle \psi_{\lambda} | h \rangle, \qquad \forall h \in H^{1/2}(\mathbb{R}^3, \mathbb{C}^4).$$

Letting $\xi_{\lambda}=\mathcal{U}_{\scriptscriptstyle{FW}}\psi_{\lambda}$, the extension on the half-space of ξ_{λ} is a weak solution of the Neumann boundary value problem (\mathcal{E}_{λ}) , hence by the above theorem follows

Theorem. (Relativistic Virial Theorem)

Let (h1)-(h2) hold. Let $\psi_{\lambda} \in H^{1/2}(\mathbb{R}^3; \mathbb{C}^4)$ be an eigenfunction of H, with corresponding eigenvalue $\lambda \in \mathbb{R}$. Then

$$\int_{\mathbb{R}^3} (|x| \partial_r V) |\psi_{\lambda}|^2 dx = \int_{\mathbb{R}^3} (\hat{\psi}_{\lambda}, c \,\underline{\alpha} \cdot p \,\hat{\psi}_{\lambda}) \, dp$$

or, equivalently

$$\lambda = \langle H\psi_{\lambda}, \psi_{\lambda} \rangle = \int_{\mathbb{R}^3} (|x| \partial_r V + V) |\psi_{\lambda}|^2 dx + \langle \psi_{\lambda}, mc^2 \beta \psi_{\lambda} \rangle_{L^2}.$$

Hence, in particular

- ▶ $\lambda \le mc^2$ whenever $|x|\partial_r V(x) + V(x) \le 0$
- $\lambda > -mc^2$ whenever $|x|\partial_r V(x) + V(x) > 0$.

Remark.

The Dirac-Coulomb operator $D_0-\gamma|x|^{-1}$ is essentially self-adjoint on $C_0^\infty(\mathbb{R}^3\setminus\{0\})$ and self-adjoint in $H^1(\mathbb{R}^3,\mathbb{C}^4)$ for $\gamma< c\sqrt{3}/2$ corresponding to a critical value Z=118. For $c\sqrt{3}/2\le\gamma< c$ (Z=137) there exists a self-adjoint extension H which is *uniquely* characterized by the property that the domain is contained in the D_0 -form domain $H^{1/2}(\mathbb{R}^3;\mathbb{C}^4)$ and $(\ref{eq:contailing})$ holds, see Schmincke (1972) and in particular Nenciu (1976). As a consequence, assumption (h2) holds for $D_0-\frac{\gamma}{|x|}$ when $\gamma\in(0,c)$.

Remark.

The essential spectrum of the free Dirac operator D_0 is given by

$$\sigma_{ess}(D_0) = \sigma(D_0) = (-\infty, -mc^2] \cup [mc^2, +\infty).$$

It is known (see Nenciu (1976)) that for the Dirac Coulomb operator with $\gamma \in (0,c)$

$$\sigma_{ess}(H) \subseteq \sigma_{ess}(D_0)$$

Hence in particular the Virial Theorem implies the absence of eigenvalues in the essential spectrum for the Coulomb potential, since for such a potential

$$|x|V_r(x) + V(x) = (x, \nabla V) + V = 0.$$