Dirac operators with strong Coulomb singularity: domain and min-max levels

Eric SÉRÉ

sere@ceremade.dauphine.fr

(CEREMADE, Université Paris-Dauphine)

joint work with Maria ESTEBAN and Mathieu LEWIN

Como, February 10, 2017

The free Dirac operator

For $\psi \in \mathcal{C}^{\infty}_{c}((\mathbb{R}^{3},\mathbb{C}^{4})$, let

$$D_0 \psi = \left(-i \sum_{k=1}^{3} \alpha_k \partial_k + \beta\right) \psi = \left(-i \alpha \cdot \nabla + \beta\right) \psi$$

 $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and β are 4 × 4 self-adjoint matrices satisfying the CAR $\alpha_i \alpha_j + \alpha_i \alpha_i = 2\delta_{ij}, \qquad \alpha_i \beta + \beta \alpha_i = 0.$

 D_0 is symmetric for the scalar product on $L^2(\mathbb{R}^3, \mathbb{C}^4)$, and it is essentially self-adjoint. Its closure (still denoted D_0) has domain $H^1(\mathbb{R}^3, \mathbb{C}^4)$ and

$$(D_0)^2 = -\Delta + 1.$$

It is unbounded from below:

$$\sigma(D_0)=(-\infty;-1]\cup[1;+\infty).$$

Subcritical Dirac-Coulomb operators

Let us assume that $V=V_1+V_2+V_3$ with $V_2\in L^3(\mathbb{R}^3,\mathbb{R})$, $V_3\in L^\infty(\mathbb{R}^3,\mathbb{R})$ and $|V_1(x)|\leq \nu/|x|$, $0\leq \nu<1$ (subcritical potential).

For $\psi \in \mathcal{C}_c^{\infty}(\mathbb{R}^3 \setminus \{0\}, \mathbb{C}^4)$, let $D_V \psi = (D_0 + V)\psi$. Then:

- D_V has a distinguished self-adjoint extension (still denoted D_V) characterized by the condition $\mathcal{D}(D_V) \subset H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$.
- Let $V_{\epsilon} := \min(\max(V(x), -1/\epsilon), 1/\epsilon)$. Then $D_{V_{\epsilon}}$ converges to D_{V} in the norm resolvent sense when $\epsilon \to 0$.
- If $\lim_{R\to\infty} \|V_3(x)\mathbf{1}_{|x|>R}\|_{\infty} = 0$, then $\sigma_{\mathrm{ess}}(D_V) = (-\infty, -1] \cup [1, \infty)$.
- If $0 \le \nu < \sqrt{3}/2$, then D_V is essentially self-adjoint on $C_c^{\infty}(\mathbb{R}^3 \setminus \{0\}, \mathbb{C}^4)$ and its closure has domain $H^1(\mathbb{R}^3, \mathbb{C}^4)$.

These results were obtained in the 70's and early 80's (Schmincke, Wust, Nenciu, Klaus-Wust, Landgren-Rejto-Klaus, Kato).

Eigenvalues in the spectral gap

If $\nu < 1$ then $\sigma(D_{-\nu/|x|}) \cap (-1,1) = \{\mu_1 \leq \mu_2 \leq \cdots \to 1\}$ and the ground state ψ_1 is the eigenvector of eigenvalue

$$\mu_1 = \sqrt{1 - \nu^2} \; .$$

More generally, when $-\nu/|x| \leq V$ and $\sup(V) < 1 + \sqrt{1-\nu^2}$ with $0 < \nu < 1$, one expects that $\sigma(D_V) \cap [\sqrt{1-\nu^2},1)$ is either empty, finite, or an infinite sequence of eigenvalues converging to 1.

Since D_0 is not bounded below, the standard Rayleigh-Ritz min-max characterization of these eigenvalues is not valid. This fact is a source of numerical instabilities.

Talman's principle '86

Assume that $-\frac{\nu}{|x|} \le V$ and $\sup(V) < 1 + \sqrt{1 - \nu^2}$ with $0 < \nu < 1$. Talman's claim is

$$\mu_{1}(V) = \inf_{\varphi \in C_{c}^{\infty}(\mathbb{R}^{3}, \mathbb{C}^{2}) \setminus \{0\}} \sup_{\substack{\psi = \binom{\varphi}{\chi} \\ \chi \in C_{c}^{\infty}(\mathbb{R}^{3}, \mathbb{C}^{2})}} \frac{(\psi, D_{V}\psi)}{(\psi, \psi)}$$

- -Proof by Griesemer-Lewis-Siedentop '99 when $-2 < V \le 0$.
- -Proof by Dolbeault, Esteban, S. '00 when $\nu < \frac{\sqrt{3}}{2}$. The proof was incomplete when $\frac{\sqrt{3}}{2} \le \nu < 1$.
- -Proof by Morozov-Müller '15 when $0< \nu <1$ with C_c^{∞} replaced by $H^{1/2}$.

Abstract min-max principle (Dolbeault-Esteban-S. 00')

Let $\mathcal H$ be a Hilbert space and $A:\mathcal D(A)\subset\mathcal H\to\mathcal H$ a self-adjoint operator.

Let F be a core, i.e. a dense subspace of $\mathcal{D}(A)$ for the norm $\|\cdot\|_{\mathcal{D}(A)}$.

Let $\mathcal{H}_{\pm}=\Lambda_{\pm}\mathcal{H}$ be two orthogonal subspaces of \mathcal{H} , with $\mathcal{H}=\mathcal{H}_{+}\oplus\mathcal{H}_{-}$.

Define $F_{\pm} := \Lambda_{\pm} F$. Assume that each F_{\pm} is in $\mathcal{D}(|A|^{1/2})$ and that:

(i)
$$a_{-} := \sup_{x_{-} \in F_{-} \setminus \{0\}} \frac{(x_{-}, Ax_{-})}{\|x_{-}\|_{\mathcal{H}}^{2}} < +\infty.$$

Let

$$\lambda_k = \inf_{\substack{V \text{ subspace of } F_+ \\ \dim V = k}} \sup_{x \in (V \oplus F_-) \setminus \{0\}} \frac{(x, Ax)}{||x||_{\mathcal{H}}^2} , \qquad k \geq 1.$$

If:

(ii)
$$\lambda_1 > a_-$$

then λ_k is the k-th eigenvalue μ_k of A in the interval (a_-, b) if it exists, where $b = \inf (\sigma_{ess}(A) \cap (a_-, +\infty))$.

Application to D_V

Assume $-\frac{\nu}{|x|} \leq V$ and $\sup(V) < 1 + \sqrt{1 - \nu^2}$ with $0 < \nu < 1$. Let $\Lambda_+ \begin{pmatrix} \varphi \\ \chi \end{pmatrix} = \begin{pmatrix} \varphi \\ 0 \end{pmatrix}$, $\Lambda_- \begin{pmatrix} \varphi \\ \chi \end{pmatrix} = \begin{pmatrix} 0 \\ \chi \end{pmatrix}$.

The subspace $F = C_c^{\infty}(\mathbb{R}^3, \mathbb{C}^4)$ is a core when $\nu < \frac{\sqrt{3}}{2}$, but in general it is **not** a core when $\frac{\sqrt{3}}{2} \le \nu < 1$.

Assumption (i) is easily checked, with $a_- < \sqrt{1 - \nu^2}$.

Assumption (ii) is a consequence of the inequality

$$q_{\sqrt{1-\nu^2}}(\varphi) \ge 0$$
, $\forall \varphi \in C_c^{\infty}(\mathbb{R}^3 \setminus \{0\}, \mathbb{C}^2)$, $\forall \nu \in [0,1]$

where

$$q_E(\varphi) := \int_{\mathbb{R}^3} \frac{|\sigma \cdot \nabla \varphi(x)|^2}{1 - V(x) + E} \, dx + \int_{\mathbb{R}^3} (1 + V(x) - E) |\varphi(x)|^2 \, dx.$$

This inequality can be proved by a regularization and continuation argument, or more directly by expressing q_E as a sum of "squares", as done by Dolbeault-Esteban-Loss-Vega '04.

Another construction of the distinguished extension (Esteban-Loss '07)

Assume $-\frac{\nu}{|x|} \leq V$ and $\sup(V) < 1 + \sqrt{1 - \nu^2}$ with $0 < \nu \leq 1$. Then the norms q_E , $-1 + \sup(V) < E < \sqrt{1 - \nu^2}$, are all equivalent on $C_c^{\infty}(\mathbb{R}^3 \setminus \{0\}, \mathbb{C}^2)$.

Let \mathcal{H}_{+1} be the closure of $C_c^{\infty}(\mathbb{R}^3 \setminus \{0\}, \mathbb{C}^2)$ for one of these norms. Let D_V^* be the adjoint of the minimal operator D_V . Here, minimal means with domain $C_c^{\infty}(\mathbb{R}^3 \setminus \{0\}, \mathbb{C}^4)$. Let

$$\mathcal{D}:=\left\{\psi=\begin{pmatrix}\varphi\\\chi\end{pmatrix}\in\mathcal{H}_{+1}\times L^2(\mathbb{R}^3,\mathbb{C}^2)\ :\ D_V^*\psi\in L^2(\mathbb{R}^3,\mathbb{C}^4)\right\}\,.$$

Then the restriction of D_V^* to $\mathcal D$ is a self-adjoint extension of the minimal operator D_V . Moreover, when $\nu<1$, it coincides with the distinguished self-adjoint extension. In other words, $\mathcal D\subset H^{1/2}(\mathbb R^3,\mathbb C^4)$ when $\nu<1$.

A density result when u < 1 (Esteban-Lewin-S. '17)

Assume that

$$V(x) \ge -\frac{1}{|x|}$$
 and $\sup(V) < 2$

and let

$$\mathcal{V} = \left\{ \varphi \in L^{2}(\mathbb{R}^{3}, \mathbb{C}^{2}) \cap H^{1}_{loc}(\mathbb{R}^{3} \setminus \{0\}, \mathbb{C}^{2}) : \right.$$

$$\left. (2 - V)^{-1/2} \sigma \cdot \nabla \varphi \in L^{2}(\mathbb{R}^{3}, \mathbb{C}^{2}) \right\}.$$
 (1)

Then $C_c^{\infty}(\mathbb{R}^3\setminus\{0\},\mathbb{C}^2)$ is dense in $\mathcal V$ for the norm

$$\|\varphi\|_{\mathcal{V}} := \|(2-V)^{-1/2}\sigma \cdot \nabla \varphi\|_{L^2} + \|\varphi\|_{L^2}.$$

In addition, we have the continuous embedding $\mathcal{V}\subset H^{1/2}(\mathbb{R}^3,\mathbb{C}^2)$.

A variant of the Esteban-Loss construction when $\nu < 1$ (Esteban-Lewin-S. '17)

Assume that for some $0 \le \nu < 1$

$$V(x) \geq -rac{
u}{|x|} \qquad ext{and} \qquad ext{sup}(V) < 1 + \sqrt{1-
u^2}.$$

Then the distinguished self-adjoint extension of the minimal operator D_V is also the unique extension with domain included in

$$\left\{\psi = \begin{pmatrix} \varphi \\ \chi \end{pmatrix} \in L^2(\mathbb{R}^3, \mathbb{C}^4) \ : \ \varphi \in \mathcal{V} \right\}.$$

More precisely, the domain of this extension is

$$\mathcal{D} = \left\{ \psi = \begin{pmatrix} \varphi \\ \chi \end{pmatrix} \in L^2(\mathbb{R}^3, \mathbb{C}^4) \ : \ \varphi \in \mathcal{V}, \ D_V^* \psi \in L^2(\mathbb{R}^3, \mathbb{C}^4) \right\}.$$

The case $\nu = 1$ (Esteban-Lewin-S. '17)

In the Coulomb case $V(x) = -|x|^{-1}$ we introduce

$$\mathcal{W}_{\mathcal{C}} = \left\{ \varphi \in L^{2}(\mathbb{R}^{3}, \mathbb{C}^{2}) : \frac{\sigma \cdot \nabla |x| \varphi}{|x|^{1/2} (1+|x|)^{1/2}} \in L^{2}(\mathbb{R}^{3}, \mathbb{C}^{2}) \right\}. \tag{2}$$

Then we assume that $V(x) \ge -|x|^{-1}$ and that $\sup(V) < 1$ and we introduce the space

$$\mathcal{W} = \left\{ \varphi \in \mathcal{W}_{\mathbf{C}} : \left(\frac{1}{1 - V(x)} - \frac{|x|}{1 + |x|} \right)^{1/2} \sigma \cdot \nabla \varphi \in L^{2}(\mathbb{R}^{3}, \mathbb{C}^{2}), \right.$$
$$\left(V(x) + \frac{1}{|x|} \right)^{1/2} \varphi \in L^{2}(\mathbb{R}^{3}, \mathbb{C}^{2}) \right\}. \tag{3}$$

Density in the case $\nu=1$ (Esteban-Lewin-S. '17)

We assume that

$$V(x) \ge -rac{1}{|x|}$$
 and $\sup(V) < 1$.

Then the space $C_c^{\infty}(\mathbb{R}^3\setminus\{0\},\mathbb{C}^2)$ is dense in \mathcal{W}_C and in \mathcal{W} for their respective norms. Also, we have the continuous embeddings

$$\mathcal{W} \subset \mathcal{W}_{\mathrm{C}} \subset \mathit{H}^{s}(\mathbb{R}^{3}, \mathbb{C}^{2})$$

for every $0 \le s < 1/2$.

A variant of Esteban-Loss in the critical case (Esteban-Lewin-S. '17)

Assume that $V(x) \ge -\frac{1}{|x|}$ and $\sup(V) < 1$. Then:

(a) The minimal operator D_V has a unique self-adjoint extension with domain $\mathcal D$ satisfying $\mathcal D\subset\left\{\psi=\begin{pmatrix}\varphi\\\chi\end{pmatrix}\in L^2(\mathbb R^3,\mathbb C^4)\ :\ \varphi\in\mathcal W\right\}$ and we have

$$\mathcal{D} = \left\{ \psi = \begin{pmatrix} \varphi \\ \chi \end{pmatrix} \in L^2(\mathbb{R}^3, \mathbb{C}^4) : \varphi \in \mathcal{W}, \ D_V^* \psi \in L^2(\mathbb{R}^3, \mathbb{C}^4) \right\}.$$

- (b) Let $V_{\epsilon}(x) := \max(V(x), -1/\epsilon)$ or $V_{\epsilon} = (1 \epsilon)V$. Then the distinguished self-adjoint extension $D_{V_{\epsilon}}$ converges in the norm resolvent sense to the distinguished extension D_V defined in the previous item.
- (c) If $V=-\frac{1}{|x|}$, the distinguished extension is the only extension such that $|x|\psi\in L^\infty(\mathbb{R}^3)$, for any eigenvector ψ of D_V .

Definition of the min-max levels

We introduce the two projections

$$\Lambda_{T}^{+}\begin{pmatrix}\varphi\\\chi\end{pmatrix}=\begin{pmatrix}\varphi\\0\end{pmatrix},\qquad\Lambda_{T}^{-}\begin{pmatrix}\varphi\\\chi\end{pmatrix}=\begin{pmatrix}0\\\chi\end{pmatrix}$$

corresponding to the Talman decomposition, and the spectral projections

$$\Lambda_0^+ = 1\!\!1 (D_0 \ge 0), \qquad \Lambda_0^- = 1\!\!1 (D_0 \le 0)$$

of the free Dirac operator. For a space $F\subseteq H^{1/2}(\mathbb{R}^3,\mathbb{C}^4)$, we define the min-max levels

$$\lambda_{T/0,F}^{(k)} = \inf_{\substack{W \text{ subspace of } \Lambda_{T/0}^+ F \\ \dim W = k}} \sup_{\substack{\psi \in W \oplus \Lambda_{T/0}^- F \\ \psi \neq 0}} \frac{\langle \psi, D_V \psi \rangle}{\|\psi\|_{L^2}^2}, \qquad k \ge 1.$$
 (4)

Min-max: freedom in the choice of F and critical case (Esteban-Lewin-S. '17)

Assume that $V(x) \ge -\frac{\nu}{|x|}$ and $\sup(V) < 1 + \sqrt{1 - \nu^2}$ with $0 < \nu \le 1$.

Take a subspace F such that $C_c^{\infty}(\mathbb{R}^3 \setminus \{0\}, \mathbb{C}^4) \subseteq F \subseteq H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$.

Then, the number $\lambda_{T,F}^{(k)}$ defined in (4), is independent of the subspace F. Moreover, if the distinguished self-adjoint extension D_V has at least k eigenvalues $\mu_1 \leq \cdots \leq \mu_k$ in $[\sqrt{1-\nu^2},b)$ counted with multiplicity, with $b = \min(\sigma_{\rm ess}(D_V) \cap [\sqrt{1-\nu^2},\infty))$, then $\lambda_{T,F}^{(k)} = \lambda_{0,F}^{(k)} = \mu_k$. Otherwise $\lambda_{T,F}^{(k)} = \lambda_{0,F}^{(k)} = b$.

Method of proof: For $F=C_c^{\infty}(\mathbb{R}^3\setminus\{0\},\mathbb{C}^4)$, apply the abstract theorem of Dolbeault-Esteban-S. to D_{V_ϵ} , then pass to the limit $\epsilon\to 0$ using the norm-resolvent convergence. For other subspaces F and $\lambda_{T,F}^{(k)}$, use the density results given above. For $\lambda_{0,F}^{(k)}$, just use the density of C_c^{∞} in $H^{1/2}$.

THANK YOU!