Quantization of the Maxwell-Dirac equations

David Stuart

Action functional
S = /[—EF FH 4+ (ihepy — m—CQ)w] dz dt
4 M ATy
describing the interaction of a Dirac spinor field W with an
electromagnetic field F' in Minkowski space-time with coordi-
nates (z° = ct,x) and metric ¢2dt? — dx2. F is given in
terms of the potential A 1-form by F},, = 9, Av — 6, Ay, and

Py = ’Y“(au - %
where {~+*,v"} = 2g*¥, with g the (here Minkowski) metric.
Write W = W19, where + means Hermitian conjugate. The
equations of motion are

Ap)

OuFH = —e WYV |
iD= %w.

Gauge invariance: ¢ — €9y  and  a, — ay + Oug
where g = g(t, x) is a sufficiently regular function.
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S = / [—%FWFW + W (ihePy —

Classical equations: 3+1-D well posed for W(0) € H®, F(0) €

HS_% for s > O, unique with X 5* condition. [d’Ancona Fos-
chi Selberg]

Existence of quantum theory in 3+1-D in doubt.

Classical equations well posed for s = 0 "charge class” in
1+1-D and 2+1-D.

Quantum theory in 1+1-D. Compare to classical
1

- - tknx T —tknx —
Y = \/En%:z(bnune —+ c,,vne ) ,  kn = 7

Classically: plane waves. | Regularity <+ decay of by, ¢,

Quantum Heisenberg anti-CR:

{bn, b1} =1 & {(x),v(y)T} = 16(z — y)

e operators {by ...} are bounded, no decay.
e Operator-valued distribution v () irregular.

Test function f(z) = X f(n)e**% then ¢ (f) bounded op-
erator if 3| f(n)| < oco.



Massless case: chiral invariance and potential formulation

Dirac equation coupled to electromagnetic field

™mcC
DAV = —W
h
In massless case
m =0

can “~v> gauge away” the field A

W = [ie(0 + 7x)]¢
where | Ay = 0| and

with
DX:_f7 DO:a'Aa Df:O

Here f is a potential for the current J, = —eW, WV, ie.
oJt =0 == JI = "9, f for some f. This reduces
the whole system to free waves.



[IBound states in the Einstein-Dirac system

Action functional

03 2 — mc
S = g ] Riwg+ 3 1 [ Va(P= 5 Wi dug

describing the interaction of two Dirac spinor fields W, and
W5 with a gravitational metric g, whose scalar curvature is R
and whose volume element is dug. D = the Dirac operator
derived from g, coupled through associated v matrices. The
Euler-Lagrange equations are

1 G

mc
Ryp — ERgab — C—4Tab7 (l)_ ?)WA =0

where R, is the Ricci curvature and
hc — . :
Top = > > _Re [WA(’Waab + Wb@a)WA}
is the energy-momentum tensor; space-time indices a, b take
values in {0, 1,2, 3}.
Finster-Smoller-Yau ansatz for spherical symmetry:
g = c2e?Vdt? — e2Mdr? — r2dQ?

and spinor fields of the form

_ v/2_—iwt [ P1e1 _ v/2_—iwt [ P1e
Vi =¢€""“e (z’cbzarel)’ Wy, =€ “e (
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where
1 3. . .
61=<é> 62=<(1)> and UT:;‘ZZCZO'Z

where o* are the Pauli matrices.

whszQ—I—n

The angular dependence of W1, W5 is that displayed by the
ground state Dirac wave functions for the relativistic The states
V4, W5 have opposite values of j3, which ensures that the
energy momentum tensor 7, is consistent with the spheri-
cally symmetric metric.

The spherically symmetric Einstein-Dirac system ad-
mits nonlinear bound state solutions (A€, v¢, ®¢, P5)
for small positive e, which can be approximated (in a
strong weighted norm) by the bound state solution ¢
of the Newton-Schrédinger system which minimizes
the energy : in particular, (5, P5) converges uni-
formly to (¢, 0) ase — 0.



The Newton-Schrodinger system
Theorem 1 (Lieb). The associated nonlocal energy

2 7)|2 2
j—m/|Vg0(a;)|2dx—m2G// o ‘3! _|c;;(|y)| dzxdy

admits a finite lower bound subject to the constraint of having
[le(z)|?de = 1 fixed, and this lower bound is attained on
a function which is unique up to translation. Further this min-
Imizer Is positive, spherically symmetric and a monotone non-
increasing function of the radial coordinate satisfying |p(r)| <
ci1e” 2" for some positive numbers c1, co.

We summarize some points:

1. The existence of a spherically symmetric minimizer of
this nonlocal energy is proved by means of the Riesz
rearrangement inequality, and a strict version of this in-
equality implies that any minimizer is spherically symmet-
ric. The corresponding Euler-Lagrange equation is

12 > o [ le)|? _
—%Aga(m) —2m G/ P— dy o(x) = np(x)

where n < 0 is the Lagrange multiplier.

2. The relation between this equation and the energy fol-
lows quickly using the condition lim,_, 4 lu(x)] = 0O
and the formula for the solution of Poisson’s equation
—Au = fon R3, namely:

(A7 f)(2) =




3. For the case when f(xz) = kp(r), where x > 0 is a

constant and p is a function of the radial coordinate r =
|z| only, a result of Newton implies:

(A Yhp)(r) = —x [ (1 _ %) (s)s2ds + K/OOO o(s)sd.

O \s

_ _R/r (3 _ 3) (s)s2ds + u(0).

O \s

Define K (r, s) = 8ms?(+—1); this kernel is non-negative
for 0 < s < r. Lieb proved any energy minimizing solu-
tion to is radially symmetric, and so solves the equation
e (d? 2d r

( +— >go—|—m2G</O K(r, 3)|g0(3)|2d3>90

2m \dr?  rdr
where £ = (n — mu(0)).
. Furthermore all positive solutions of this latter equation
can be obtained by a scaling of the unique positive solu-
tion of

d? . . )
(dr +;%>¢+ </O K(r,s)|o(s)] ds>¢_¢.

Ep = —




Theorem 2. There exists an interval (—eq, +¢€1) on which is
defined a C1 curve e — =€ = (I5,Q°, N, ®g,vS5) € X
of solutions to the Einstein-Dirac system such that ||=¢ —
=nllx = O(e). More explicitly, ¢ — 2mG as e — 0 and

€ / € €
Q° +4mGfo = 2ru/ll 12 + 1N —ullpern + 191 = ¢l

{1,6} 1,0 — O(e).
H’rad ﬁBCl

h
+ s+ 5|
m

In terms of the original variables of the problem, we define a
metric

g€ = e 22V 412 — 2N dr? — r2dQ2

where 1€ = €2N°€ and (1 — e 2N) = 2(2i¢fo(r) + Q).
Define also ®5 = eys, then for e = ¢~ small we have a
solution (A€, v¢, ¢, P5) and

—2 —2)€ 2.1 —21, € 2
e “|(1—e ) — 2e“ru 12+ € “|v°—e“u 1.1
| ”302 | B
h

/
QmSO ||H{1,5}mE

rad

T 1P1 = @l 20 +e o5 4e

rad

= O(e).
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In addition to results on Newton-Schrodinger bound states
proof depends on their non-degeneracy (Lenzmann).
Weights in norms

£l pes, = supr="|f(r)] +sup(L +1)°1f ()

etc have to be chosen to allow dynamical adjustment of
Arnowitt-Deser-Misner mass.

J. Math. Phys. 51 (2010), 032501 and also Rota-Nodari,
Ann IHP (2010).

Existence of such solutions reflects attractive nature of
gravity. Why do such solutions exist for Maxwell-Dirac
system?
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Abstract. The Maxwell-Dirac system describes the interaction of an electron with
its own electromagnetic field. We prove the existence of soliton-like solutions
of Maxwell-Dirac in (3+1)-Minkowski space-time. The solutions obtained are
regular, stationary in time, and localized in space. They are found by a variational
method, as critical points of an energy functional. This functional is strongly
indefinite and presents a lack of compactness. We also find soliton-like solutions
for the Klein-Gordon-Dirac system, arising in the Yukawa model.
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1. Introduction

The Maxwell-Dirac equations, which describe the interaction of an electron with
its own electromagnetic field, play a major role in quantum electrodynamics.
They can be written as follows
. . 3
M — D) Evo, - A —myp = 0 .m R x R3
OuAF =0 , 4n9,0FAY =JY in RxR

where v, € {0,1,2,3}, m > 0, (, ) is the usual hermitian product in C*,
P(xo,x) € C*for (x0,x) € RxR3and v° = (§ %) € Myya(©), +* = (° ”k) €

—ak 0

Alss(C), P =0, J# = (W, v ), Jo =T, Jp = —J*, k =1,2,3, and o are
the Pauli matrices

* Supported by Contract MM-31 with Bulgarian Ministry of Culture, Science and Education and
Alexander Von Humboldt Foundation.
** Partially supported by NSF grant DMS-9114456.
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Solutions of (M-D) that are stationary in time, and localized in space, are called
soliton-like solutions of Maxwell-Dirac. They can be viewed as representations
of extended particles. Their existence has been an open problem for a long time
(see e.g. [18], p.235). It is the aim of this paper to find such solutions. We also
find soliton-like solutions for the Klein-Gordon-Dirac equations arising in the
so-called Yukawa model (see [7] and [4]). These equations are

(iy*0,— )W —my = 0 in RxR’
(KG — D) ) 1 - o 3
HOux+Mx = 4—7—‘_(%1#) in RxR.

The above systems have been studied for a long time and many results are
available concerning the Cauchy problem for (M-D). The first result about the
local existence and uniqueness of solutions of (M-D) was obtained by L. Gross in
[19]. Later developments were made by Chadam [10] and Chadam and Glassey
[11]in 1+1 and 2 + 1 space-time dimensions and in 3 + 1 dimensions when the
magnetic field is 0. Choquet-Bruhat studied in [12] the case of spinor fields of
zero mass and Maxwell-Dirac equations in the Minskowski space were studied
by Flato, Simon and Taflin in {15]. In [17], Georgiev obtained a class of initial
values for which the Maxwell-Dirac equations have a global solution. This was
performed by using a technique of Klainerman (see [21-25]), which gives L*°
a priori estimates via the Lorentz invariance of the equations, and a generalized
version of the energy inequalities. In this respect, see also [21]. The same method
was used by Bachelot [1] to obtain a similar result for (KG-D). Finally, recent
results of Beals and Bezard yield the existence and uniqueness of weak solutions
for initial data satisfying the natural energy estimates.

As far as the existence of stationary solutions (soliton-like) of (M-D) is con-
cerned, there is a pionneering work by Wakano ({32]) in which an approximation
of (M-D) is studied:

Assuming that the electrostatic potential is predominant, the extreme case in
which Ag # 0,4; = A; = A3 = 0 is considered (Coulomb-Dirac). The approx-
imate problem (C-D) can be reduced to a system of three coupled differential
equations by using the spherical spinors. Wakano obtained numerical evidence
for the existence of stationary solutions of (C-D). Further work in this direc-
tion (see [28, 30]) yielded the same kind of numerical results for some modified
Maxwell-Dirac equations which include some nonlinear self-coupling.

Recently, Garret Lisi (see [16]) obtained numerical solutions for the whole
system of Maxwell-Dirac equations. This was done by using an axially symmetric
ansatz.

In the present paper we make no approximation on the electromagnetic po-
tential, and we show that for 0 < w < m there are exact solutions

(¥,A) : R x R® — C* x R* of (M-D) of the form
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Ylxo,x) = e“%px) , ¢:R*—C*

a.n APGox) = TP x L =/ Y iy,
Ix] B XY

We prove this result by using a variational method which was introduced by
Esteban and Séré in [14] (see also [13]) to deal with some class of nonlinear
Dirac equations in which the nonlinear coupling is local, the so-called Soler
model (for more details and results on this model, see e.g. [2, 3, 8, 9, 27, 28,
30]). This variational method was inspired by earlier works on periodic and
homoclinic orbits of hamiltonian systems ([6, 5, 20, 31, 29]).

In order to state the main results contained in this paper, let us note that

If (3, A) is a solution of (M-D) of the form (1.1), then (i, A) is a solution of

(12) v Op —mp —wyp — Y*ALp = 0 in R
' —4n A =J0=|p|* , —4nlAy=-JF in R%.

The solutions of (1.2) are given by the critical points ¢ € H %(]R3, C*) of the
functional

1 . . m w
I(p) = / E(z“rov‘@kw,cp)— 5 @)= —ilvlz
E&S

1 JH
L[ L0 4y,

4 Jpxw -yl

Our main result concerning the Maxwell-Dirac equations is the
following.

(1.3)

Theorem 1. For any w € (0, m) there exists a non-zero critical point @, of 1,
inH? (B3, C*. @, is a smooth function of x, exponentially decreasing at infinity
together with all its derivatives. The fields ¥(xp, x) = €'“% @, A¥(xg,x) = J £ % !}‘c—x
are solutions of the Maxwell-Dirac system (M-D).

The stationary solutions of the Klein-Gordon-Dirac equations are
given by critical points ¢ € H 2(R3, C*) of the functional

1
J.(py = /I&3 3 (i’ Y 8, 0) ~ —’;—(“95, ©) ~ % ol

_ E // @, )X (@, p)) e~ M-yl dx dy .
4 E3xm3 "x —yl

(1.4)

About this problem we will prove the following.

Theorem 2. There are infinitely many critical points of J, for any w € (0, m).
These critical points have the form

1
(15) o) = (:;((’r)) (éo‘s’%a)) :
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Relativistic guantum mechanics
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Fig. 8-1 DPotential barrior confining cloctron of energy
E in rogion I to the left.

This result can be equally well inferred on dimensional groups
using Ap Ar ~ A without reference to the particular gauesian shape.
In discussing probleins and interactions in which the electron is
“spread out” over distances large compared with its Compton wave-
longth, we may simply ignore the existence of the uninterpreted
negative-encrgy solutions and hope to obtain physically sensible and
accurate results, This will not work, however, in situations which find
clectrons localized to distances comnparable with A/me. The negative-
frequency amplitudes will then be appreciable, the zitterbewegung
torms in the current important, and indeed we shall find ourselves
beset by paradoxes and diletnmas which defy interpretation within
the framcwork so far developed by the Dirac theory of an electron.
A celcbrated example of these difficulties is the Klein paradox,!
illustrated by the following example.

In order to localize electrons, we must introduce strong external
forces confining them to the desired region. Suppose, for examplo, we
want to confine a free electron of energy E to region I to the left of
the origin £ = 0 in the one-dimensional potential diagram of Fig. 3.1.
If the clectron is not to be found more than a distance d to the right
of £ = 0, in region II, then V must rise sharply within an interval
2 S d to a height Vy > E g0 that the solution in II falls off with a
characteristic width €d. This is as in the Schrddinger theory, until
the confining length d shrinks to ~#/mc and V, — E increases beyond
met. To sece what happens, let us consider an electrostatic potential
with a sharp boundary as in Fig. 3.2 and calculate the reflected and
transmitted current for an electron of wave number & incident from
the left with spin up along the ¢ direction. The positive-encrgy
solutions for the incident and reflected waves in region I may be

V0. Klein, Z. Phystk, 88, 1587 (1629).



Solutions to the Dirac equation for a free particle 4]

written
- A
0
Vo™ aete| cki (3.34)
E 4 me?
. 0
B 0 ]
0 1
Vea ™ bt ckih + ble—te 0
T E+me ckih
L 0 LE + me]

For the transmitted wave we need the solutions of the Dirac equa-
tion in the presence of a constant external potontinl ed = Vo, These
differ from the free-particle solutions only by the substitution
Po = (1/¢)(E — V), 80 that in region 11

Akgic? m (E — Vi)t = mic' m (B — me? = Vo)(E + me? = Vy)

Wae therefore write the transmitted wave of positive cnergy £ > 0 as

-1 T m 0
: 0 1
Viesns = defhe chik, + d' e 0 (3.35)
E — Vo + mc? —chky
_ 0 J | B = Vo + mc'

The amplitudes d and d’ are fixed by continuity of the solution at

V()

%

K

ANVANNA
VAV

‘ I n

>8

Fig. 3-8 Floctrostatio potential idealized with a sharp bound-
ary, with an incident froc electron wave of energy £ moving to
the right in region I. For V¢ > K 4 mc? tho reflectod our-
rent from the potential excoeds the incident one; this is an
example of the Klein paradox.



“Paradoxical” aspects of Dirac equation

The single particle Dirac equation describes relativistic parti-
cles of (negative) charge.

e Repulsive potential can produce bound states from neg-
ative energy spectrum

e Klein paradox: Propagation through large potential barri-
ers of height V5 > E where transmission by Schrodinger’s
equation disallowed. Continuous spectrum of free Dirac
operator is

(—o0, —mc?] U [me?, +00)

Electron with energy me? < E < —mc? + Vg < Vj can
tunnel through barrier.

Should be explained though multi particle theory - see
discussion in of Bongaarts and Ruijsenaars (1976) in con-
text of C'x algebraic quantization of Dirac equation in ex-
ternal potential. Pessimistic conclusion on possibility of
unitary scattering operator.



Repulsion and formation of bound states

Work in 1 + 1 dimensional Minkowski space-time with coor-
dinates (z° = ct, z1 = z) and metric ¢2dt2 — dz2. Can see
phenomenon very clearly.

'VO=<(1)_01>, ’71=<?é> (1)

Electromagnetic field consists only

1.
E:F01 =;A1—8:L’AO

a=vovl=<ié>, ﬁ=70=<é_01>,
(2)

and using the gauge in which A4 is zero these equations re-
duce to

—Af = —e VBV (3)
2
W+ icaW’ = +mg AW — %AO\U . @)

Consider bound state solutions of form:

W(t, ) = e BN ( gg% ) ,  Aplt,z) = —p(x).

(9)



Repulsion and formation of bound states |l

—" = e([UP+ V%),

eV = (E — ep — mc?)U,

hicU' = —(E — ep + ch)V.
Put E = —mc?+n and observe that formally U/V = O(%) =
O(e). Rescale U = ¢U

—" = (S0P + V),
W' 4+ (2m — 20U = —epe?U,
U’ +nV = epV.
This can be treated as perturbation of

K2
—— —epV = —nV
2m

Now have an attractive potential for Schrodinger equation.



| Maxwell Dirac equations

The starting point is the action functional

ch

, )w] da dt

S = / [—%FWFW + W (ihey

describing the interaction of a Dirac spinor field W with an
electromagnetic field in Minkowski space-time with coordi-
nates (z° = ct,x) and metric ¢2dt? — dx2. The electro-
magnetic field is given in terms of the potential A 1-form by
Fyy = 0, Ay — 0y Ay. he Dirac operator is given by
Pa=7"(0 — o Au)

where {~*, vV} = 2g*", with g the (here Minkowski) metric.
Write W = WT~0 where 1 means Hermitian conjugate. The
equations of motion are

Gauge invariance: ¢ — €9y  and  ay — ay + Oug
where g = g(t, x) is a sufficiently regular function.



Dirac v-matrices are:

; 0O o 0 I O
J — J =
7= (5 9) =80

where I is the 2 x 2 unit matrix and o; are the Pauli matri-

_ 0O 1 0O —2 1 O
Ces. o1 = <1 O), oo = (’L O), o3 = (O _1>. After

introduction of a space time splitting:
0 = a - (—iV — eA)p + mBy + A%,

(207 — AYAD = ey,  (c7207 — A)A = e .

Here a = (al,a?,a3), and o and 8 are the 4 x 4 Dirac
matrices:

: 0 o I 0
J — J T
=0 8) 2= (8 5)

with {0]} 1 the Pauli matrices. We will not distinguish lower
and upper |nd|ces g of @ and o, so that a; = aJ, o = ol
The a-matrices and ~-matrices are related by

V=B, 1<j<3;  AP=5.



Maxwell-Dirac solitary waves

The solitary wave (et AH(zx)) satisfies the stationary
system

wp = a-(—iV—eA)p+mpBop+eAld,  —AAF = edyHo.

Theorem 3. There exists w« > —m such that forw € (—m, wx)
there is a solution to this system of the form

(. w) = [63451(633,6)] | C— \/mz L2,

e2P5(ex, €)

d — Fl] c COO<(O,6*); (HQ(R?’;@Q)@HQ(R?’;@Q))), €
and with
AP € C°O<(O, €x) ; Hl(R3,R)mL°O(R3,R)), 0<puc<3.

Above, H1 = H1(R3,R) is the homogeneous Dirichlet space
of L® functions with || f||%,, = [ |V f|*dz < co. For small
e > 0, one has

|B1 — B1|| g2 + ||P2 — Bl 2 = O(€?),

where ®1(y), ®>(y) are of Schwartz class. The solutions
can be chosen so that in the nonrelativistic limit e = 0 one
has

- 1

o (y) = po(y)n, P1(y) = o ? Voy(y), (6)



where n € 2, |n| = 1, and g is a strictly positive spher-
ically symmetric solution of Schwartz class to the Choquard
equation

1 1 2 .
————pp = ——Acpo—< *@%) o,  wo(z) ER, z€

2m 2m 4|x|
(7)

The Dirac field ¢ has exponential decay, while the electro-
magnetic potential satisfies

loll7

41|z

Ad(z) = +0((&)™®),  A(z) = O((z)~?)

as |r| - +oo.

e Solutions axi- (not radially) symmetric

e Paradoxical repulsion/attraction behaviour indicates sin-
gle particle Dirac equation contains positronic element.
Semi-classical limit has such “mixed” characteristics.

e Need analysis of bound states in quantum field theory to
assess likely physical significance (if any).






Motivation to study the Schwinger model

e Understand significance of bound states in quantum field
theory?

e Quantum electrodynamics in 143 dimensions not known
to exist; may not exist in usual mathematical sense. (QCD)

e Interesting mathematical structure and physical features:
mass generation, gauge invariance issues, fermion/boson
transformation...

e But: has no nonrelativistic limit - need massive fermions
for that.
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The possibility that a vector gauge field can imply a nonzero mass particle is illustrated by the exact

solution of a one-dimensional model.

T has been remarked! that the gauge invariance of a
vector field does not necessarily require the existence
of a massless physical particle. In this note we shall
add a few related comments and give aspecific model
for which an exact solution affirms this logical possibility.
The model is the physical, if unworldly situation of
electrodynamics in one spatial dimension, where the
charge-bearing Dirac field has no associated mass con-
stant. This example is rather unique since it is a simple
model for which there is an exact divergence-free
solution.?

GENERAL DISCUSSION

The Green’s function of an Abelian vector gauge
field has the structure

Gus (,0") =71y (— 10) G (—10) 8 (w— o),
where 7., (p) is a gauge-dependent projection matrix and
B(m?)
2+m2——ze

§(p)= f it —

which is subject to the sum rule

1=/ dm? B(m?).
0
An alternative form of G(p) is
0 s(m2) —1
§(p)=| prw—ictpio [ am—"—],
0 PmP—ie

where the function s(m?) and the constant A\? are non-
negative. The latter has been derived® with the under-
standing that the pole at 2=0 of the expression

2 0 d 2
——+ / in? — s(m )= / sty ()]
0 Mm

2—g
is completely described by the parameter A. Accordingly,

1 = B
= e—— d 2
§O=—= [ =",

m2

* Supported in part by the Air Force Office of Scientific Research
(Air Research and Development Command), under contract num-
ber AF-49(638)-589.

1 4‘ Schwinger, Phys. Rev. 125, 397 (1962).

here is a divergence in the so-called Thirring model [W. E.
Thirring, Ann. Phys. (New York) 3, 91 (1958)], which uses local
current interactions rather than a Bose field.

3 J. Schwinger, Ann. Phys. (New York) 9, 169 (1960).

and A?>0 unless =0 is contained in the spectrum.
Thus, it is necessary that A vanish if m=0 is to appear
as an isolated mass value in the physical spectum. But
it is also necessary that

s(0)=0,

such that
© dm?

/;0 —;n;s(m2)< o,
for only then do we have a pole at p?=0,
p°~0: G(p)~Bo/ (p—ie), 0<Bo<1.
Under these conditions,

B(m?)= Bob(m*)+ B1(m?),

0 dm2 —1
Bo=(1+/ ——~s(m2)>
0o m?
and

Ba(m2) =5 (m)/m?] /

[1+P /0 i dm'::,—z"_%}r[ws(mz)]?.

The physical interpretation of s(m?) derives from
the relation of the Green’s function to the vacuum trans-
formation function in the presence of sources. For suf-
ficiently weak external currents J,(x),

where

<0|0>J=exp[%i / (&) <dx'>fﬂ(x>9,.y(x,x'ﬂv(x')]

~eaf [ @IPSPI0) |

which involves the reduction of the projection matrix
v (P) to gy for a conserved current, or equivalently

pqu(P)z‘O-

We shall present this transformation function as a
measure of the response to the external vector potential

Au(p)=5(®)J.u(p),

namely,

<010>J=e~xp[%i f (dp)Au(p)*g(p)w,.@)].

2425
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The probability that the vacuum state shall persist
despite the disturbance is

[(0]0)7|2= exp[— / (@p) A, (p)*Au(p) Img(ﬁ*—l]

= expl: - / (dp)dm?s (p*4-m?)
s () (— %)Fw(p)*mm}

which exhibits s(m?) as a measure of the probability
that an external field F,, will produce a vacuum excita-
tion involving an energy-momentum transfer measured
by the mass .

The vanishing of s(#?) at m=0 is normal threshold
behavior for an excitation function. If a zero-mass
particle is not to exist, =0 must be an abnormal
threshold. Two possibilities can be distinguished. In
the first of these, s(?) is finite or possibly singular at
m=0, but in such a way that

» s(m?)
lim 2z / dm? =0.
0

20 mZ_z

Then the physical mass spectrum begins at m=0 but
there is no recognizable zero-mass particle. For the
second situation, s(#?) has a delta-function singularity
at m*=0,
s (m?) = N6 (m*)+-s1(m?),
and
s1i(m?)=0, m*<mg

If the threshold mass m, is zero, the restriction of the
previous situation applies to the function s;(m?). Now,
m=0is not contained in the spectrum at all. This state-
ment is true even if mo=0 for, according to the structure
of Bi(m?)= B(m?),

m2s; (m?)
B(m?)= ,
LR (m?) P+ [rmis, (m*)
in which
0 S1 (mQ)
R(m?)=m?—N+4-m?P / dm'’? ,
m02 m'? — mZ

we have
m2s1 (m?)
lim B(m?)= lim =
m2->0 m2->0 2\

Let us suppose that 7, is the threshold of a continuous
spectrum. A stable particle of mass m < mo will exist if
R(m¢?)>0. Should both R(m¢?) and si(m®) be zero
there would be a stable particle of mass m,. No stable
particle exists if R(m¢®)< 0. But there is always an
unstable particle, in a certain sense. By this we mean
that R (m?) vanishes at some mass value m;>m,, under
the general restrictions required for the continuity of
the function R(m?), as a consequence of this function’s
asymptotic approach to 4 with increasing m?. The

JULIAN SCHWINGER

mass 73 will be physically recognizable as the mass of an
unstable particle if the mass width

s, (m1?)
" LR (met) dm?]

is sufficiently small. [We take the derivative of R (%)
to be positive, which is appropriate for the simplifying
assumption that only one zero occurs.] The contribution
of such a fairly sharp resonance to the sum rule for
B(m?) is given by

/ dm?B(m?)=[dR (m2)/dm2 1 <1.

SIMPLE MODELS

Some of these possibilities can be illustrated in very
simple physical contexts. We consider the linear ap-
proximation to the problem of electromagnetic vacuum
polarization for spaces of dimensionality #=2 and 1.
A modification of a technique* previously applied to
three-dimensional space yields for m>m,:

(1—mo2/m2) 1/2
s(m?) 2/ dv(1—?)(e?/8x?) for n=3
0

(1._m02/m2) 172
=/ dv(1—122) (e¥/47?)
’ X[m*(1—=v®) —m@ ]2 for n=2

(1—mo2/m2) 1/2
=/ dv(1—2%) (¢%/m)d[m? (1 — %) —m 2]
0

for n=1;

for m <miy:
s(m?)=0,

where the known result for »=3 has been included for
comparison. The threshold mass m, is that for single
pair creation. It should be noted that the coupling
constant €? of electrodynamics in n-dimensional space
has the dimensions of a mass raised to the power 3—u.
For <3 this single pair approximation does not lead
to difficulties concerning the existence of such integrals

as
—>00 dm2
Bo—1—1=/ — B(m?),
o m?

since, for m>>my:
s(m?)~ (e2/12x%) for #=3,
~(/16r)(1/m) for n=2,
~(&/2x)(m¢/m*) for n=1.
The particular situation in which we are interested
appears at the limit m¢— 0. Then we have

s(m®)=(&/167)(1/m) for n=2,
= (&%/m)8(m?) for n=1.

* Selected Papers on Quantum Electrodynamics (Dover Publica-
tions, New York, 1958), p. 209.
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Two-dimensional electrodynamics illustrates the first
of the two possibilities for an anomalous threshold at
m=0. The spectral function B(m?) describes a purely
continuous spectrum,

2 e dm
dm® B(m?)=—— ———,
x 16 m2+ (e2/16)?

and an m integration from 0 to o satisfies the sum rule.
In one-dimensional electrodynamics we meet a special
case of the second possibility, with

N=¢/r, s1(m?)=0.
Accordingly,
B(m?)=8(m*— (¢/))

and the mass spectrum is localized at one point, de-
scribing a stable particle of mass e/7'/2.

The basis indicated for the latter conclusion will not
be very convincing, but it is an exact result. To prove
this we first compute for one spatial dimension the elec-
tric current induced by an arbitrary external potential
in the vacuum state of a massless charged Dirac field.
The appropriate gauge-invariant expression for the
current® is

)
o' >z

Jula) = ~e tequs(a) exp| —ieq f a5 4,09 |

2’

in which the approach of «’ to x is performed from a
spatial direction in order to maintain time locality. The
Green’s function is defined by the differential equation

a0, ieqd u(%) ]G (w,a") = 8 (x—2'),

together with the outgoing wave boundary condition,
in the absence of the potential. Only two Dirac matrices
appear here,a®= —ao= 1 and a!=a;, which has the eigen-
values #=1. Those are also the eigenvalues of the inde-
pendent charge matrix ¢. The Green’s function equation
can be satisfied by writing

G(xa')=G(x,2") explieg[é(x)—¢(+') ]},
where
ardup=arA,(x)

and
a*d,GO(x,x')=8(x—x').

The latter defines the free Green’s function, which is
given explicitly by

*d
G°(x,x’)=/ Z—Pexp[ipa”(x,.—-x,/)] for a°>a,
0 ™

°d
:_/ % explipar(u—s/)] for w0<s.

o 2T

5 The necessity for the line integral factor has been noted before
[J. Schwinger, Phys. Rev. Letters 3, 296 (1959)].
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At equal times, and for sufficiently small x;,— %, we
have

G(x,x") expl: —ieq /; Z dgr Au(f)]

i ay €q
~__ ——ai[d1p(x)—A1(x)].

277 X1— xl’ T

The first term does not contribute to the vacuum cur-
rent when the limit x," — x; is performed symmetrically.
On utilizing the relation

a1(81p—A1)=— (dep—A0),
we find that

ju()= -~§An<x>+an[£ trg (x):|.

This expression for the induced current is Lorentz
covariant, gauge invariant, and obeys the equation of
conservation. It is also a linear function of the external
field. To verify these statements we construct a dif-
ferential equation for tr¢(x) by multiplying the ¢
equation with dop—a;9; and evaluating the trace. The
result is

0%} tro () = 9,4 (),
and therefore

1 trg (1) = — / (@)D (/) 0, A (a),

in which D is the outgoing-wave Green’s function defined

by
— 02D (x,x")=08(x—2x’).

By using a symbolic matrix notation for coordinates and
vector indices, we can write

j=—(¢¢/7)(14+8Dd)4,
which exhibits the symmetrical projection matrix

==140Da,
In=md=0,

that guarantees invariance and current
conservation.

We shall insert this result in the functional dif-
ferential equation obeyed by the Green’s functional
G[J], the vacuum transformation function in the pres-
ence of external currents. It is convenient to use the
particular system of equations that refer to the Lorentz

gauge,

gauge

{ (89— 62)% ;7— (1+6D6)[J+j<% £>} } G[J]=0,

5
0—G[J]=0,
o7
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which also utilize a symbolic notation for vectorial co-
ordinate functions. We have written j(—18/8J) to
indicate the conversion of j(4) into a functional dif-
ferential operator by the substitution 4 — —18/8J.
The functional differential equation implied by the
known structure of this operator is

(-t

or, on uniting the two defining properties of the
functional,

16
(— -———v:Q])G[J]:O,

i8J

in which
[— 8+ (¢/m) ]G (w") =8 (w—a').
The Green’s functional G[J] is therefore given exactly
by
Gr3=esp| 1 [ @) @)1 1) |

with
Guv (0,2") = 1y (—10)G(—10) 6 (x—2")

1
P+ (/m)—ie

Thus, all states that can be excited by vector currents
are fully described as noninteracting ensembles of Bose
particles with the mass e/7'/2.

Concerning the complete Green’s functional including
Fermi sources, G[J ], we shall only remark that

and

S(p)=

1
G[nJ ]:expl:—a / (dx) (dx")n(x)
196
XG<xax/7 - _)77 (xl)]G[‘]l
187
in which the Green’s function can be presented as
Gl )=o) e § [ @8)74(e) 4,08 |

with

d d
j»(g,x,xq=eqau(alg—g)w(g,x)_D@,x/)].

On expanding the Green’s functional in even powers of
the Fermi source, we encounter functional differential
operators that are contained in one or more factors of
the type

exp] / (@0)74(&ma)3/7%(8) |

the effect of which is simply to produce the translation

JULITAN SCHWINGER

J— J+jin G[.J]. The first Fermi Green’s function is

G(x,0") =G (x, ', ~i8/8T)G[T ]| ymeo
=0 (s exp[%i / (@) (@)

x;‘»(s,x,x'>9w<s,s'>jv(z',x,x')].

The latter exponential factor is given by

exp{—~£ / (dp)(pziie—P2+(e2i1r)—’ie>

X(l—e“"””"))].

We shall be content to note that this integral and the
similar integrals encountered in more general Green’s
functions are completely convergent. The detailed
physical interpretation of the Green’s functions is
rather special and apart from our main purpose.

These simple examples are quite uninformative in
one important respect. They do not exhibit a critical
dependence upon the coupling constant. As we have
discussed previously, one can view the electromagnetic
field as undercoupled and the hypothetical vector field
that relates to nucleonic charge as overcoupled, in the
sense of a critical value at which the massless Bose
particle ceases to exist. The corresponding appearance
of an anomalous zero-mass threshold must be attributed
to a dynamical mechanism. We can supply an artificial
mathematical model that illustrates the situation. Let
the following be a contributory term in s(m?):

A2 my
so(m?)=— ,
7 (W= mP (my)

in which m is a characteristic physical fermion mass,
and N/mo, v/mo, and k are positive functions of the
(dimensionless) coupling constant. In electrodynamics
the near-resonant contributions of such a term can be
identified with the creation of a unit angular momentum
positronium state, while the values far below resonance
refer to the creation of three-photon states (the model
falsifies the latter, which should vary as m8 for m<ms).
It is reasonable to suppose that « decreases with increas-
ing strength of the coupling, and we can imagine that a
critical value exists for which both x and v reach zero,
with finite \. In that circumstance,

so(m?) =28 (m?),

and the null-mass particle disappears from the spectrum.
Since this argument requires that one type of excitation
move down to zero mass at the critical coupling strength,
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correctly formulated. One should ask “What are the
fundamental fields?”

it is plausible that some other types of excitation will
then be located at fairly small fractions of #. Thus, one
could anticipate that the known spin-O bosons, for
example, are secondary dynamical manifestations of
strongly coupled primary fermion fields and vector
gauge fields. This line of thought emphasizes that the
question “Which particles are fundamental?” is in-
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Scattering of Electromagnetic Waves in Saxon-Schiff Theory

H. UBErRALL*f
Conductron Corporation, Ann Arbor, Michigan
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We calculate the diffraction of electromagnetic waves by weak scatterers with complex dielectric constant
and permeability using the Saxon-Schiff theory of potential scattering. Boundary conditions, polarizations,
and the optical theorem are discussed to some extent. Our results for the scattering amplitude contain certain
special cases obtained previously by other authors. In an Appendix, we compare the results for the scattering
by a homogeneous dielectric sphere with those of the exact Mie theory. It is seen that the Saxon-Schiff
theory gives a good qualitative agreement insofar as it reproduces the diffraction maxima and minima, in
vast superiority to the Born approximation. In the asymptotic limit 2R — oo, the radar cross section is

shown to agree with the exact result for a not too large index of refraction.

HE theory of Saxon and Schiff,! originally
developed for high-energy scalar potential scat-
tering, has been applied to the scattering of electro-
magnetic waves by dielectric bodies.? Schiff® has also
considered scattering of vector waves using an earlier
version of the theory, valid for either small or large
angles only. In this note, we derive the scattering
amplitude of electromagnetic waves for a general weak
scatterer with complex dielectric constant and per-
meability, and demonstrate that the results can be
made to reduce to the large- and small-angle expressions
of Schiff® in the respective limits.
Maxwell’s equations, setting ¢=1 and assuming a
harmonic time dependence of the fields,

~exp(—1ks),
become
VX E=ikuH, VvXH= (¢6—ike)E. (1)

No free charges are assumed to be present; o is the
conductivity, and e, u are dielectric constant and
permeability, respectively (we shall use Gaussian units,
eo=po=1). Taking the divergence of the second

* Also at the Harrison M. Randall Laboratory of Physics,
University of Michigan, Ann Arbor, Michigan.

1 The work described in this paper was carried out for the
Air Force Ballistic Missile Division under Subcontract to the
Conductron Corporation as a part of the program being carried
out under Chrysler Corporation Prime Contract AF04(694)-25.

1D. S. Saxon and L. I. Schiff, Nuovo cimento 6, 614 (1957)

2W. M. Brown, Ph.D. the51s, Department of Ph ysics, Uni-
versity of California, Los Angelés, April, 1959 (unpubhshed)
D. S. Saxon, IRE Transactions on Antennas and Propagation,
Vol. AP-7, Special supplement, p. $320 (1959).

3L. 1. Schxﬂ Phys. Rev. 103, 443 (1956) ; 104, 1481 (1956).

equation, we get
v-¢E=0, (2)

where we have introduced the complex dielectric
constant,
é=e(141v),
with
v=0/ke.

Elimination of H from (1) gives the wave equation
V2E4+K2E=VvV:-E—uvuX (VXE), 3)
with the squared propagation constant
K?=F%u¢. 4)

Equation (2) can again be obtained by taking the
divergence of the wave equation.
Following reference (1), a Green’s function

F(ry)=F(r',r)=— (4np)leiSr.1" 5)
will be considered, where
=[r—1'[;
the phase is assumed to have the limits
hm oS,y )=C(r),

. ~ (6)
limyS=kn+0(1);

r=nr.

This Green’s function satisfies the differential

equation
VP4 (VSPF=6(x—1")+iFp*v - (p72vS). (7)



The Schwinger Model Quantum field theory in 1+1 dimen-
sions, zero mass for Dirac fermion:

1 N
S = / ~ S Fw P i dedt, P =" (9u—ieay)

1 0 0 i 0
oo (1 8) o (28). wain(®

Phase invariance: ¢ — %94

. . . P}
Chiral invariance: ¢ — e~ %.

Associated conservation laws:
: : — 0 -1
j =" =Pyt = (59, 51)

§OH = Py = (51, 59)

are classically conserved (9,,j* = 0 = 9,,5>*), but:

In the quantum theory only the first of these proper-
ties holds - there is an anomaly in the chiral conser-
vation law.

The precise mathematical expression of the anomaly is

57:““ — _lE
T Y
where E = a — Oag is the electric field. This is an equality of

operator valued distributions.

Ouj



Mass generation and Bosonization Together with equation of
motion (Maxwell) this implies

2
(04 )E=0
T

in place of OF = 0 - mass generation. Crucial issues which
arise:

e Requirement of energy bounded below == introduce
fermionic Fock space with (non-interacting) vacuum €2
on which gauge group acts non trivially

e Enforcing gauge invariance leads to modified Hamilto-
nian and breaking of chiral symmetry

e Existence of gauge invariant (interacting vacuum) W but
at expense of chiral anomaly.

e Anomaly+bosonization leads to real scalar field with mass

e/\/:

Hg = % /OL (H(ar:)2 + o (z)? + §¢(x>2) da

to be expected from Schwinger’'s work (1962).
e Fundamental excitations are bound states of fermion/anti-
fermion




Gauge invariance and large gauge transformations Phase in-
variance localises to gauge invariance: ) — e*94) and ay —
ay + Oug Where g = g(t, x) is a sufficiently regular function
which is L periodic in x. Goulomb gauge: choose periodic
g so that spatial component a; = a is constant: cannot be
made zero with periodic g. This leave residual gauge invari-
ance by the group

7. = {gn(z) = 2™ NE/ Iy )

of large or modular gauge transformations.

e o defined mod 27 /L - takes values in the circle S1 =
R /(27 /L) which is dual to the spatial domain R/ L.

e careful treatment of the action of the group Z illuminates
greatly the role of gauge invariance in producing the anomaly
and the interacting vacuum.

e Noninteracting Fock vacuum is not gauge invariant ; phys-
ical (interacting) vacuum is gauge invariant.

e Vacuum of Y M,?



Hamiltonian and Quantization |

Fermi procedure leads to Hamiltonian

[ i (5 0ia)) 4 o) (~ ) M (t) dar

0 2e2
Here (—A)~1 means the kernel of the operator —A = —9?
on [0, L] with periodic boundary conditions, = is convolution
and 0 = 0. Longitudinal component of the electric field has
been integrated out leaving only the transverse component
E'" = a.

Associated classical equations of motion:
i) = —iy° (8¢ — iay) — agy

. 2 /L (8)
B == [T uhde,  a=E",

where ag is determined by the Gauss law constraint —Aag =
—e2ypTyp = —e2450. We will write O = Ty and j1 =
Wi~y54y for the currents and Q = [§j9dz, Q% = [§ il dx
for the corresponding charges.

To quantize the theory it is necessary to associate operators
to the fields which satisfy the canonical relations:

{thalt, 2), ¥t 1)} = 456(x — y) (9)
(other anti-commutators being zero), and
.2
[E",a] = [a,a] = -~ (10)

(other commutators being zero).



Energy Levels

In Coulomb gauge with a = constant the operator

—iy> (¢ — iap))
can be diagonalized :

5 R R

vPult =o' and APul = —ul.

—Uu
giving spectrum

2
+ (kp 4 a) knz% ne’

Second quantization with Dirac sea leads to Hamiltonian

S (kn+a)al pan g — Y (kn+a)a) jan

and charge operator

T T
> ay, 1,0n,L T > @, RO, R
commutation relations

{an,La a’Jrrn,L} = dnm {an,Ra a:rn,R} = dnm
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In positive energy representation define

bp=all (n>0) by=al (n<0)

and
cnzaf;j (n > 0) cnzafijj (n <0)
then
> [kml (bfubm + chem) — aQ®
meZ
Q° =Y blbp— Y blon— Y chen+ Y cen
n>0 n<0 n>0 n<0

while charge operator is

Q = (blbn — chen) -

e Energy now bounded below, BUT
e At expense of introducing vacuum which is not gauge in-
variant



Quantization of electric field Use the Schrodinger representa-
tion in which a1 = a is represented by coordinate multiplica-
tion on L2([0, 2Z]), while

) Did— _Ei.
L da
In the absence of interaction with any matter fields the elec-
tromagnetic field is described by the Hamiltonian
. e? d2

em — T <17 1

2L da?
on L2([0, 2Z]) with periodic boundary conditions

e The large gauge transformations Z are the reason that
periodic boundary conditions are appropriate

e Periodic boundary conditions have to be modified in the
presence matter.



Positive energy representation Interpret the relations (9) :

1 2nm
= brune™® 4 cl vpe ) |k = 11

with
{bn, b} = {ens e} = 6 (12)

(other anti-commutators being zero) and

Up = uR]l{HZO} -+ uL]l{n<O} , (13)

_ R L
vn = u 501 U<y
The w1t are eigenvectors of v° with v2uf = wf and v2ul =
—ul. The b;rn, bm (resp. c;rn, cm) are fermionic (resp. anti-
fermionic) creation, annihlation operators acting on the zero
charge fermionic Fock space .

Recall the fermionic Fock space: there is a (non-interacting)
vacuum $2g and associated finite particle states

Qmon = [] bl ch Q0 (14)

where m = {mz} ~,and n = {n]} _, range over subsets
of Z of arbitrary finite size. Let F be the linear span of all
the C2m n, let 7o C F be the zero charge subspace in which
there are equal numbers of fermions and anti-fermions, i.e.
M = N. The zero charge Fock space Hg is the comple-
tion of Fq in the Fock space norm || - ||, and the vectors in



(14) constitute an orthonormal basis. There is a self-adjoint
operator which extends the operator given on Fq by

Q%= blbn— > blbn— > chen+ Y cen.
n>0 n<0 n>0 n<O
which will also be denoted Q>; it will be referred to as the axial
(or chiral) charge operator. Define ]—"éj C Fo = {Ker(Q> —
2P)}NFy. The corresponding completions are denoted HY
and are the orthogonal eigenspaces arising in the spectral
decomposition of Q.



Schwinger regularization
L » . -
Z 9_)0 Z // bT /'Uzjlle an/y + Cn/UL/G_I_an/y) em(y :IZ)

X 7y (bnuneZk”x + c;flvne_ik”x> xo(x —y) dydz,

and similarly for Hamiltonian. Computation gives:

(Q5Jq7::

Qo 7eI = Z b};bn— Z b;flbn— Z nCn=+ Z cn—%—l

n>0 n<0 n>0 n<0
Crucial points:

e Requirement of realizing Hamiltonian in some represen-
tation where it is semi-bounded leads to introduction of
vacuum (“sea-level”) which is not gauge invariant.

e Introduction of non-gauge-invariant vacuum means that
Q° re-interpreted in associated representation no longer
gauge invariant or conserved.

e Schwinger regularization leads to introduction of Q>:7€9
gauge invariant but still not conserved (evolves in simple
way).

e Relatively mild “renormalizations” of Hamiltonian intro-
duced - normal ordering and eifa; no subtractions of
infinities.



Gauge invariant Hamiltonian Schwinger regularization leads
to Hamiltonian: H = Ho+ : H,.,,; :, Where

2d2

e a’l
Hop=———+ km| (b] bm~4-cl cm) — ——— aQ>7¢9
0] 2Lda2+7nz€:z | m|( m m+CmCm) o CLQ
(15)
and
2
e<L 1
He oy = ? Z k—2 O(_m)JO(m) (16)
m=%=0 "M

is the Coulomb energy, written in terms of the fourier modes
of the current operator

— ZJO(m)eikmx .
The symbol Q°-"¢Y indicates the regularized axial charge op-
erator given by:

Q5,Teg = Z b;‘:bbn— Z b';qub?’L_ Z nC —I— Z Cn——_l .

n>0 n<0 n>0 n<0
(17)

This expression is also derived from Schwinger regulariza-
tion; corresponding expression for the regularized ordinary
charge is in fact unchanged, i.e.

Q=Q"Y = Z (b;rlbn — chn) :

nez



The total Hilbert space for the theory can now be defined as

K= {W=W(a)eHy: Ve LQ([O,Q%];HO)}, (18)

2
with norm defined by |W||2 = [F ||W||?da where || - || is
the Fock space norm.



Action of Z and twisted periodicity

We define a unitary action of the group Z = {gn(z) =
e2miNz/L . - of large gauge transformations on #g. The
formulae are best motivated by comparison with the natural
expressions in the infinite Dirac sea. There is a unitary oper-
ator I, corresponding to the generator g1, whose action on
the non-interacting vacuum state is

Iy =Q_1=0b ¢l Q. (19)

The action on Fock space is then determined by specifying
the action on the set of creation and annihlation operators, on
which it acts as a modified shift operator:

bn, = Tby T = b, 1, n#%0, bg—Thl' ! = ¢l
cn — TepI™ 1 = Cpn41, N 70, co — FCOF_l = bT_l

with corresponding relations for the adjoints:

b, > T =0l |, n#0, bl-ToiI ! =¢

n 1>
ch =TIt =c  ,n#0, Tl =0,
(20)
Lemma 4. These formulae determine an action of Z on Hg
generated by I', with the property that I'2p = Q2p_q for
all P. Similarly there is a corresponding modified shift ac-
tion for the inverse T'—1 with the relations inverted, so that in
particular T—1 . Qo = bT cT = €291 and more generally
r-1. Qp = QP—I—l'



The transformation I' commutes with () and so preserves H,
but it does not commute with Q°: for example bgcg gC;Qo IS
mapped into b;cgcng 1820, with the eigenvalue of Q- reduc-
ing by 2. Formally Q°T—1 = I'"1(Q® — 2) on 5. The in-
terpretation of all these formulae is that large gauge transfor-
mations can create and annihlate fermion/anti-fermion pairs
in a way which seems naively to change the axial charge: an
anomaly. Nevertheless we have:

Lemma 5. The Schwinger regularizations of the axial charge
and of the Hamiltonian are unchanged by the action of 7.

Now the gauge transformation g acts on the connection as
a — a + 2%, and hence the requirement of gauge invariance
means that we should regard the Hamiltonian H as an un-
bounded operator defined on I with the following boundary
conditions of twisted periodicity:

w(Qi):r lw(0) and w(—)—r Lw/(0). (21)

(writing prime for -2 7). A suitable dense domain for the Hamil-
tonian is D, the space of smooth functions taking values in
Fo which satisfy this twisted periodicity condition, i.e. the re-
striction to [0, 2Z] of the smooth Fy-valued functions which
satisfy W(a+ 2%) =T1w(a) foralla € R.

Lemma 6. D C K is dense in the norm || - ||x on K. The
integration by parts formula (W' &) = —(W, d") holds
forW,® inD.



Remark 7. The Fock vacuum $2q, thought of as an element
of IC which is independent of a, does not satisfy (21) and is
not gauge invariant. It follows that the interacting (or physical)
vacuum cannot be proportional to C2q, or indeed any of the
unexcited states 2 p, since 7 maps these states into one an-
other, thus destabilizing the Fock vacuum. The physical vac-
uum is a linear combination of states of the form fp(a)2p.



Hamiltonian formulation of Schwinger
Theorem 8. The Hamiltonian is bounded below and essen-
tially self-adjoint on'D C K. Vacuum given by:

Wo(a) = 3 fla— (P~ )2p,

Pez
with
1 ~2
N LZ —La
f(@) = —5 2V
mT8e4

and ', obtained from unexcited states by unitary Bogoliubov
transformation. Anomaly equation can be derived as a con-
sequence of the Heisenberg equation of motion.

e Proof uses Lieb-Mattis bosonization (Luttinger model).
Gauge invariance couples together the different sectors
with Q° = 2P as above.

e There is a nontrivial action of M = 7Z, the modular group
of large gauge transformations, on the non-interacting
Fock vacuum €2 given in which maps €2 to the unex-
cited states (2p. The €2 p are eigenstates of the (unregu-
larized) axial charge operator Q° with the following prop-
erty: no excited fermionic state is occupied which has
higher energy than an unoccupied one (amongst states
with the correct sign of Q).

e |t is necessary to take into account this action of Z in
the definition of the Hamiltonian and currents in order to
obtain the “correct” gauge invariant expressions. These



expressions, derived using only Schwinger point-splitting
regularization, contain terms which give rise to the anomaly
in the chiral conservation law.

Even without “turning on” the Coulomb interaction the in-
teraction between the fermions and the spatial compo-
nent of the electromagnetic potential a destabilizes the
gauge variant non-interacting vacuum $2g, producing an
interacting vacuum which is gauge invariant (Manton).
There is an explicit formula for the interacting vacuum as
a linear combination of segments of a gaussian tensored
with 2 p, wrapped around the circle ST = R/(2x/L).
The effect of turning on the Coulomb interaction is to
transform the unexcited states €2 p into dressed versions.



Schwinger Model in External Potential

Introduce external classical potential by adding [ A, J¢*tHdxdt
to the action

1 .

S = /[—4—€2FMVF”V + W(zhcl)A — m) \IJ] dx dt
where J¢* is given smooth (for example). The equations of
motion are

OuFH* = —e (W’y’/\l! + Jext’y> :

iDAW = %w.

Can write A = a + A®*! and carry out analysis as before.

e Non-autonomous evolution can be constructed in the space
IC by a time discretization process.

e Bosonization leads to scalar field coupled to the external
field A"t but through the topological coupling term

| e Ao, dodt

where eV = —eYH, rather than usual minimal “covariant
derivative” coupling (which doesn’t make sense for real
field).



Construction of Evolution Operator

In non-autonomous case need to solve
oV = AV, W(s) = Wy

as|W(t) = U(t,s)WVs|use Kato’s notion of a stable family of
generators { A(¢)} on a Banach space X with norm || ||.

Assume either of the following equivalent conditions hold for
some positive M and S:

o HH§~\;1<A(?5;‘) + A)_lH < M\ — B)~N where here

and below {t;} is any nondecreasing finite set of times
and\ > 3,

1) expl—s;A(t))]| < M expl+B L, 551 for any
collection of positive numbers {s; }.

Assume existence of dense ctsly embedded subspace

Y C DomA(t) Ve,

restricted to which each A(t) generates a strongly cts group
on Y satisfying || exp[—sA(t)]|| < M exp[sB]. Then the
{A(t)} generate a strongly cts evolution operator U (¢, s) sat-
isfying

U, )] < Mexp[B]t—s|], and

U(t,r) =U(t,s)U(s,r).



TO DO

e Basic excitations of Schwinger model and fermion/ant—
fermion bound states. Massless can be thought of as ex-
treme relativistic limit - are these bound states connected
to bound states in non-relativistic limit? Need to develop
analysis of non-relativistic limit in QFT.

e Non-relativistic limit of P(¢) The complex \¢* field the-
ory in 141 dimensions: prove non-relativistic limit is non-
relativistic bosons with point interaction 3\/4m26(z1 —
xo. Partial results only (Dimock) via integral equations
(Dyson, Bethe-Salpeter equations).

e Non-relativistic limit of massive Schwinger model Relate
to bound states of classical Maxwell-Dirac system. Par-
tially proved Coleman correspondence suggests no fermionic
states.



| Classical Nonrelativistic particle

Particle: mass M concentrated at a point

X(t) e R® attimet

No internal structure.

Newton : if no forces act on a particle it moves at uniform
velocity
d2
dt?
Conservation laws:
d

= — (momentum)

dt

2
E = 5 (kinetic energy)

People used to think that ... when a thing moves it
is in a state of motion. This is now known to be a
mistake. Bertrand Russel



Il Quantum Nonrelativistic Particle

. 2 . . .
The energy momentum relation £ = 5 turns into a dispersion
relation

for waves
explikr — iwt]

which are the basic solutions of the Schrodinger equation:

! ot 2 0x?
with initial data ¢ (x,0) = ¥g(x) .

LOY 1?02y

Quantum particle
e still has no internal structure;

e lives in a state characterized e.g. by Fourier transform

f(k) = Po(k) € L?

as

D(z.t) = % [ k) explike — i) d



[Il Relativistic Particle The relativistic energy momentum rela-
tion

B2 =2 4 2
turns into the dispersion relation
wi = k*+m?  (h=1)
and thence the relativistic wave equation

8%y 9% 2

o2 Ox2 m=y = 0.
Problem of negative energies E = + /2 + m? resolved by
saying

e 1) is not a wave function;

e it is a quantum field operator describing creation and an-
nihilation of particles;

e interpretation as multi-particle theory essential.

e 7 is a distribution taking values in space of unbounded
operators on a Hilbert space, constrained by Heisenberg
relation

(The Reason for Anti-particles by Richard Feynman.) Leads
to three sources of trouble: ultra-violet, infra-red and particle numtk




IV Fock space is the (complete) Hilbert direct sum of the sym-
metric n-fold tensor powers of L2(R), i.e.

H = é Sym™(L?(R)).
n=0

Atypical element, W € H, is a sequence of functions {W,, }°2_,
where W,, € L2(R"™) is symmetric with respect to interchange
of any pair of coordinates.

W12 =Y 1WallZo(ny
The vacuum has Vg = 1 and V,, = 0forn > 1. Call it Q2
or |0).

Annihilation and creation operators are given, respectively, by

(apWV)p—1(k1, ... kn—1) = vVnWn(k,k1,..., k1),
(aJ;LW)n—H(kL k1) =
ntl sk — k)
Z vnEl

(Really define operator valued distributions or quadratic forms.)

Wi (K1yeees ks kg1



V The Free Field

Given dispersion relation w;, = \/k2 + 4m?, we define the
fields
1

o = 75 [ o
m(x) = \/% / —1 \/% (akeikm — a;rce_ikm) dk .

Really operator valued distributions

(akeikx + a;rfe_ilm) dk , and

o) = [ o (o TR +al F(k)) di

where F(k) = (2m) /2 e~z f(z)dr € S(R) is the
Fourier transform.

Notice vacuum expectation infinite:

(019(2)?0) = llp@Ql2 =, | Z’Z — 4o,

Wick ordering - move annihilation operators to right - gives

(0 :|e(z)?:]0) = 0.

Physically : removes self interaction of particles on them-
selves.



VI Regularized fields Let §; € C§°(R) be a nonnegative,
even function with §1(z) = 0 for || > 1, and satisfying
[81(x)dx = 1. For k > 0 define éx(xz) = kd1(kx), so that
the operator é,* is an approximation to the identity. Regular-

ized fields:
k : .
SOK./(CC) = / XKJQ(wz (akezkx _I_ (1;26 7,]{56) dk?,

mr(x) = / —ixr(k) \/% (akeikx — aze_ikm) dk ,
where xx (k) = x(k/x) with x (k) = 1 (k).

Regularization amounts to a smooth momentum cut-off at
scales large compared to « since xx(k) = 61 (k/k) :

2
e = (Olon(@)?0) = [ PACOER < 4o

But Wick ordering interferes with boundedness below:

: go,i(a:)4 L= SOK,(:E)4 — 6%:@% + 37/%
= (pr — 3%&)2 - 6’7’/%

2
— 675

Vv

so the pointwise lower bound diverges as cut-off removed.



Wick Operators Given a function or distribution w € S(R™17),
writtenw = w(k, k') fork = (kq,...kn) and k' = (ky,... k),
the Wick operator on Fock space is given by

w= Lo al (k) .. .a"(k)w(k, £
x a(ky)...a(k))dkdk.
Here dk’ = [1}— dk} and dk =[] dk;.

Writing = [ a(k)a(k) dk for the number operator as usual,
we have the following bounds in the case that the kernel is
square integrable:

1(1+)

and, more generally fora + b > m + n,

1(14) "2, (14) 72
< (1 + [m — nfm=l/2)|y)

2" 4) T2 < |

where on the left hand side || - || means Fock space operator
norm, while on the right hand side ||w|| means the norm of the
kernel w as an operator Sym”(L2(R)) — Sym™(L?(R)).



The Wick polynomial [ : ox(z)?* : b(z) dx determined by
a regularized field and a spatial cut-off b € L1(R) N L2(R)
determines a Wick operator (with obvious conventions for j =
0,4):

4
5 (‘.‘) [UCYRRUCHITCND

j=0 \J
X a(—kj_|_1) e a(—k4)dk1 e dk4

where

4 4 |
o) == 3 k) I 2852 e g%y
=1 " =1 2wk

The preceding Wick operator bounds applied to this give for
any € > 0 a number C¢ such that

[ (@) b(x)de — [ o (x)*: b(x) dx
(1+)4

< Ce
~ (min{k, K}



VII Schrodinger equation:

O W2 824)
e = ——— 4V
! ot 2 Ox2 T VY

with initial data ¢ (x,0) = ¥g(x) .

Feynman (PhD thesis, 1942) reformulated quantum mechan-
ICS :

Dz, t) = /exp{%/ot(%)'( — V(X(s)))ds)
X o (X (1)) I] dx(s)

0<s<t

in terms of “complex probability amplitudes” by summing over
paths with X (0) = z. Put A = 1 from now on.

Mathematical analysis of semi-group via the Feynman-Kac
formula: after Wick rotation

t — —1t

to Euclidean time exp[—tH]vyg(x) is given by
Jexo— [ V(X (s))ds} o (X(1))]
1 t
= [ ew{— [ V(X())ds} vo(X (1)) da(X)

(expectation w.r.t. Wiener measure d; on paths starting at
x = X(0).)



lll Rewrite Feynman-Kac formula as

L
(F, e_tHG)L2 = / ;C (F(m) e~ Jo JSVdSJtG) dx

where JsV : C(R) — R is the function on path space X —
V(X (s)) etc.

X: Gaussian process with covariance 5 min{s, t}, i.e. evo-

lution is obtained by averaging over all Brownian paths with

PPN |
diffusion 5.

For an oscillator

oY _ 19%y 2 2

— = ———= 4+ = V

"ot 2 Ox? + w rY VY
the formula generalizes via mtroductlon of the oscillator process
defined as the Gaussian process indexed by t € R with co-

variance

—w|t—s|

(aVa()) = “—

Averaging over oscillator process we can write ¢ = e~
where

e

t
(F, exp[—tH]|G) = (J()F e Jo JSVdSJtG)

where again JsV : C(R) — R is the function on path space
with value V (¢(s)) .



IX Classical Harmonic Oscillator: Hamiltonian

Hose = 1( 2 + W2332)

2
Classical free field
92¢p 929 5
— — — 4 =0
Ot2 Ox2 T 4mTP

we have, with 7 = 9;¢ = ¢, the Hamiltonian

H = %/ (71‘2—|— (%)2—|—4m2(b2> da

or, with, ¢(k) = (277)_% [ e g (z)dx etc

0= [ (F®PR+ (¥ +am2) 150/ dk

Free field: an infinite collection of oscillators of frequency w;, =
VE2 4 am?2.

Nelson: used this to generalize Feynman-Kac to quantum
fields, to describe semi-group et acting on the Fock space.



X Feynman-Kac-Nelson Formula We need two facts

e 3 a Gaussian measure v on S’(R) giving a model of
Fock space (Schrodinger representation) such that

(6(N6()) = [ $()o(9)1(de)
= [TB0 4,
ka

e J a Gaussian measure p on S’(R?) such that
(SN = [ $(N(g) n(d)
_ /// fs, kye™ gt k)

ka

t
(2 16) 1y = (Jor e B a6)




Here ¢ is the spatial Fourier transform of Euclidean field

bt k) = (2r)"2 / e~ R (¢ 1) da

l.e. arguments are time ¢t and spatial Fourier variable k. The
Euclidean field is Gaussian process on S’'(R?2) with covari-
ance

1

(S6UN®E@)) = 55 [oia s gs b

At each time ¢ there exists an isometry J; : L2(dvy) — L2(dp)
given on Wick monomials by

Je 1 o(f)" =19, )™
Wick monomials obtained by orthogonalization process with
respect to the corresponding Gaussian measure. They gen-
erate polynomials which are dense in the corresponding L2
space.



XI Glimm-Jaffe PSC Expansion

Introduce an overall large upper momentum cut-off x, and
sequence

K1 < ko< kz < - <Ep_1<K<EKnp K}nze\/;

and corresponding cut-off Hamiltonians h, = H" for 1 <
v < n—1,and then and h, = H"* if v > n. Want bounds
independent of x or equivalently n.

lterated Duhamel:

t
e—tH’i — e_thl L /O 6—(t—31)h2(Hlﬁ) . hl)e_slhl dS]_

t rt
_ —(t—s2)h3 K _ —(s2—51)h2
/O /81 e (H" — ho)e

x (H" — h1)€_81h1 dsodsq

e [ LA C AR My

Sn—2

1
% H (e—(SV—Sy—l)hu(Hﬁ _ h,/_1)>
v=2
n—1
x e 51M H ds; .

j=1



The aim is to prove an operator lower bound H* > —cg >
—oo which is uniform in k, in spite of the fact that pointwise
H?7 is not uniformly bounded below. Indeed normal ordering
gives

on(@)? = (@) — 6pk(x)? s + 372
> —677



