
Quantization of the Maxwell-Dirac equations

David Stuart

Action functional

S =

Z



�1

4

Fµ⌫F
µ⌫

+ 

⇣

i~cD/A � mc2

~
⌘

 

�

dx dt

describing the interaction of a Dirac spinor field with an
electromagnetic field F in Minkowski space-time with coordi-
nates (x0 = ct,x) and metric c2dt2 � dx2. F is given in
terms of the potential A 1-form by Fµ⌫ = @µA⌫ � @⌫Aµ, and

D/A = �µ(@µ � ie

~c
Aµ)

where {�µ, �⌫} = 2gµ⌫, with g the (here Minkowski) metric.
Write  =  

†�0, where † means Hermitian conjugate. The
equations of motion are

@µF
µ⌫

= �e �⌫ ,

iD/A =

mc

~
 .

Gauge invariance:  ! eig and aµ ! aµ + @µg

where g = g(t, x) is a sufficiently regular function.
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S =

Z



�1

4

Fµ⌫F
µ⌫

+ 

⇣

i~cD/A � mc2

~
⌘

 

�

dx dt

Classical equations: 3+1-D well posed for (0) 2 Hs, F (0) 2
Hs�1

2 for s > 0 , unique with Xs,b condition. [d’Ancona Fos-
chi Selberg]

Existence of quantum theory in 3+1-D in doubt.

Classical equations well posed for s = 0 ”charge class” in
1+1-D and 2+1-D.

Quantum theory in 1+1-D. Compare to classical

 =

1p
L

X

n2Z

⇣

bnune
iknx

+ c†nvne�iknx
⌘

, kn =

2n⇡

L

Classically: plane waves. Regularity $ decay of bn, cn

Quantum Heisenberg anti-CR:

{bn, b†m} = 1 $ { (x), (y)†} = 1�(x� y)

• operators {bn . . . } are bounded, no decay.

• Operator-valued distribution  (x) irregular.

Test function f(x) =

P

ˆf(n)eiknx, then  (f) bounded op-
erator if

P |ˆf(n)| < 1.



Massless case: chiral invariance and potential formulation

Dirac equation coupled to electromagnetic field

iD/A =

mc

~
 

In massless case

m = 0

can “�5 gauge away” the field A

 = [ie(✓+ �5�)] 

where D/ = 0 and

Aµ = @µ✓ � ✏⌫µ@⌫�

with

2� = �f , 2✓ = @ ·A , 2f = 0

Here f is a potential for the current Jµ = �e �µ , i.e.
@µJµ

= 0 =) Jµ
= ✏µ⌫@⌫f for some f . This reduces

the whole system to free waves.
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IIBound states in the Einstein-Dirac system

Action functional

S =

c3

8⇡G

Z

Rdµg +
2

X

A=1

~
Z

 A

⇣

D/� mc

~
⌘

 A dµg

describing the interaction of two Dirac spinor fields  
1

and
 

2

with a gravitational metric g, whose scalar curvature is R

and whose volume element is dµg. D/ = the Dirac operator
derived from g, coupled through associated � matrices. The
Euler-Lagrange equations are

Rab �
1

2

Rgab =
8⇡G

c4
Tab, (D/� mc

~
) A = 0

where Rab is the Ricci curvature and

Tab =
~c
2

X

Re
h

 A(i�a@b + i�b@a) A

i

is the energy-momentum tensor; space-time indices a, b take
values in {0,1,2,3}.

Finster-Smoller-Yau ansatz for spherical symmetry:

g = c2e2⌫dt2 � e2�dr2 � r2d⌦2

and spinor fields of the form

 

1

= e⌫/2e�i!t
 

�

1

e
1

i�
2

�re
1

!

,  
2

= e⌫/2e�i!t
 

�

1

e
2

i�
2

�re
2

!
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where

e
1

=

 

1

0

!

e
2

=

 

0

1

!

and �r =

1

r

3

X

i=1

xi�i

where �i are the Pauli matrices.

!~ = mc2 + ⌘

The angular dependence of  
1

, 
2

is that displayed by the
ground state Dirac wave functions for the relativistic The states
 

1

, 
2

have opposite values of j
3

, which ensures that the
energy momentum tensor Tab is consistent with the spheri-
cally symmetric metric.

The spherically symmetric Einstein-Dirac system ad-
mits nonlinear bound state solutions (�✏, ⌫✏,�✏

1

,�✏
2

)

for small positive ✏, which can be approximated (in a
strong weighted norm) by the bound state solution '
of the Newton-Schrödinger system which minimizes
the energy : in particular, (�✏

1

,�✏
2

) converges uni-
formly to (',0) as ✏! 0.



The Newton-Schrödinger system
Theorem 1 (Lieb). The associated nonlocal energy

~2

2m

Z

|r'(x)|2dx�m2G
Z Z |'(x)|2|'(y)|2

|x� y| dxdy

admits a finite lower bound subject to the constraint of having
R |'(x)|2dx = 1 fixed, and this lower bound is attained on
a function which is unique up to translation. Further this min-
imizer is positive, spherically symmetric and a monotone non-
increasing function of the radial coordinate satisfying |'(r)| 
c
1

e�c
2

r for some positive numbers c
1

, c
2

.

We summarize some points:

1. The existence of a spherically symmetric minimizer of
this nonlocal energy is proved by means of the Riesz
rearrangement inequality, and a strict version of this in-
equality implies that any minimizer is spherically symmet-
ric. The corresponding Euler-Lagrange equation is

� ~2

2m
�'(x)� 2m2G

Z |'(y)|2
|x� y| dy '(x) = ⌘'(x)

where ⌘ < 0 is the Lagrange multiplier.
2. The relation between this equation and the energy fol-

lows quickly using the condition lim|x|!+1 |u(x)| = 0

and the formula for the solution of Poisson’s equation
��u = f on R

3, namely:

(���1f)(x) =

Z f(y)

4⇡|x� y|dy.
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3. For the case when f(x) = ⇢(r), where  > 0 is a
constant and ⇢ is a function of the radial coordinate r =

|x| only, a result of Newton implies:

(���1⇢)(r) = �
Z r

0

✓

1

s
� 1

r

◆

⇢(s)s2ds+ 
Z 1
0

⇢(s)sds

= �
Z r

0

✓

1

s
� 1

r

◆

⇢(s)s2ds+ u(0).

Define K(r, s) ⌘ 8⇡s2(1s�1

r); this kernel is non-negative
for 0  s  r. Lieb proved any energy minimizing solu-
tion to is radially symmetric, and so solves the equation

E' = � ~2

2m

 

d2

dr2
+

2

r

d

dr

!

'+m2G

 

Z r

0

K(r, s)|'(s)|2ds
!

'

where E = (⌘ �mu(0)).
4. Furthermore all positive solutions of this latter equation

can be obtained by a scaling of the unique positive solu-
tion of

�
 

d2

dr2
+

2

r

d

dr

!

�+

 

Z r

0

K(r, s)|�(s)|2ds
!

� = �.



Theorem 2. There exists an interval (�✏
1

, +✏
1

) on which is
defined a C1 curve ✏ ! ⌅

✏
= (l✏, Q✏, N✏,�✏

1

, ✏
2

) 2 X

of solutions to the Einstein-Dirac system such that k⌅✏ �
⌅NkX = O(✏). More explicitly, l✏ ! 2mG as ✏! 0 and

kQ✏+4mGf
0

� 2ru0k
BC1,2

2

+ kN✏ � ukBC1,1 + k�✏
1

� 'k
H

{2,�}
rad \BC1,0

+ k ✏
2

+

~
2m

'0k
H

{1,�}
rad \BC1,0

1

= O(✏).

In terms of the original variables of the problem, we define a
metric

g✏ = ✏�2e2⌫
✏
dt2 � e2�

✏
dr2 � r2d⌦2

where ⌫✏ = ✏2N✏ and (1 � e�2�✏
) = ✏2(2l✏f

0

(r) + Q✏).
Define also �✏

2

= ✏ ✏
2

, then for ✏ = c�1 small we have a
solution (�✏, ⌫✏,�✏

1

,�✏
2

) and

✏�2k(1� e�2�✏
)� 2✏2ru0k

BC1,2
2

+ ✏�2k⌫✏ � ✏2ukBC1,1

+ k�✏
1

� 'k
H

{2,�}
rad \BC1,0

+ ✏�1k�✏
2

+ ✏
~

2m
'0k

H
{1,�}
rad \BC1,0

1

= O(✏).
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• In addition to results on Newton-Schrodinger bound states
proof depends on their non-degeneracy (Lenzmann).

• Weights in norms

kfkBC�
�0
= sup r��0|f(r)|+ sup(1 + r)�|f(r)|

etc have to be chosen to allow dynamical adjustment of
Arnowitt-Deser-Misner mass.

• J. Math. Phys. 51 (2010), 032501 and also Rota-Nodari,
Ann IHP (2010).

• Existence of such solutions reflects attractive nature of
gravity. Why do such solutions exist for Maxwell-Dirac
system?
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Abstract. The Maxwell-Dirac system describes the interaction of  an electron with 
its own electromagnetic field. We prove the existence of  soliton-like solutions 
of  Maxwell-Dirac in (3+l)-Minkowski space-time. The solutions obtained are 
regular, stationary in time, and localized in space. They are found by a variational 
method, as critical points of an energy functional. This functional is strongly 
indefinite and presents a lack of  compactness. We also find soliton-like solutions 
for the Klein-Gordon-Dirac system, arising in the Yukawa model. 

Mathematics Subject Classification: 49S05; 81V 10; 35Q60; 35Q5 t 

1. Introduction 

The Maxwell-Dirac equations, which describe the interaction of  an electron with 
its own electromagnetic field, play a major role in quantum electrodynamics. 
They can be written as follows 

(M - D)  { ( i T u O u - f U A u ) ~ -  m~b = 0 in ~ • ~3 

~ A U = 0  , 47rOuOUA~'=J u in ~ x ~  3 

where u , #  E {0 ,1 ,2 ,3} ,  m > O, ( , ) is the usual hermitian product in C 4, 
~(Xo,X) C C 4 for (xo,x) E I ~ x ~  3 and 70 = ( / g l )  E M4x4(C), ,,fk = ( -o  -t~0 ~r k0 ) @ 
~/g4• ~ =  ,,~0~), j #  ___ (-~,'~#~d), Jo =jo ,  Jk = _ j k ,  k = 1,2,3,  and crk are 
the Pauli matrices 

* Supported by Contract MM-31 with Bulgarian Ministry of Culture, Science and Education and 
Alexander Von Humboldt Foundation. 

** Partially supported by NSF grant DMS-9114456. 
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266 M.J. Estebal et al. 

crl = ( 0  ~ )  c~2 = ( 0  - i )  cr 3 (10 01)  
1 ' i 0 ' = - " 

Solutions of (M-D) that are stationary in time, and localized in space, are called 
soliton-like solutions of Maxwell-Dirac. They can be viewed as representations 
of extended particles. Their existence has been an open problem for a long time 
(see e.g. [18], p.235). It is the aim of this paper to find such solutions. We also 
find soliton-like solutions for the Klein-Gordon-Dirac equations arising in the 
so-called Yukawa model (see [7] and [4]). These equations are 

(KG - D) { ( i T " O ~ - X ) ~ b - m ~  = 0 in N x N  3 
1 

O"Oux+M2x = ~-~(~,~) in I~xlt~ 3 . 

The above systems have been studied for a long time and many results are 
available concerning the Cauchy problem for (M-D). The first result about the 
local existence and uniqueness of solutions of (M-D) was obtained by L. Gross in 
[19]. Later developments were made by Chadam [10] and Chadam and Glassey 
[11] in 1 + 1 and 2 + 1 space-time dimensions and in 3 + 1 dimensions when the 
magnetic field is 0. Choquet-Bruhat studied in [12] the case of spinor fields of 
zero mass and Maxwell-Dirac equations in the Minskowski space were studied 
by Flato, Simon and Taflin in [t5]. In [17], Georgiev obtained a class of initial 
values for which the Maxwell-Dirac equations have a global solution. This was 
performed by using a technique of Klainerman (see [21-25]), which gives L ~ 
a priori estimates via the Lorentz invariance of the equations, and a generalized 
version of the energy inequalities. In this respect, see also [21]. The sanae method 
was used by Bachelor [I] to obtain a similar result for (KG-D). Finally, recent 
results of Beals and Bezard yield the existence and uniqueness of weak solutions 
for initial data satisfying the natural energy estimates. 

As far as the existence of stationary solutions (soliton-like) of (M-D) is con- 
cerned, there is a pionneering work by Wakano ([32]) in which an approximation 
of (M-D) is studied: 

Assuming that the electrostatic potential is predominant, the extreme case in 
which A0 ~ 0,A1 = A2 = A3 ~ 0 is considered (Coulomb-Dirac). The approx- 
imate problem (C-D) can be reduced to a system of three coupled differential 
equations by using the spherical spinors. Wakano obtained numerical evidence 
for the existence of stationary solutions of (C-D). Further work in this direc- 
tion (see [28, 30]) yielded the same kind of numerical results for some modified 
Maxwell-Dirac equations which include some nonlinear self-coupling. 

Recently, Garret Lisi (see [16]) obtained numerical solutions for the whole 
system of Maxwell-Dirac equations. This was done by using an axially symmetric 
ansatz. 

In the present paper we make no approximation on the electromagnetic po- 
tential, and we show that for 0 < w < m there are exact solutions 

(~,A) : I~ X l~ 3 ---+ C 4 N R 4 of (M-D) of the form 
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Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations 267 

(1.1) 
{ ~b(x0,x) = eiWX~ , ~ p  : ]~3 _+ C4 

1 ~ dy J"O'). AU'(x~ = J"  * ~ = 3 lx-y-'--~ 

We prove this result by using a variational method which was introduced by 
Esteban and $6r6 in [14] (see also [13]) to deal with some class of nonlinear 
Dirac equations in which the nonlinear coupling is local, the so-called Soler 
model (for more details and results on this model, see e.g. [2, 3, 8, 9, 27, 28, 
30]). This variational method was inspired by earlier works on periodic and 
homoclinic orbits of hamiltonian systems ([6, 5, 20, 31, 29]). 

In order to state the main results contained in this paper, let us note that 
If (~b,A) is a solution of (M-D) of the form (1.1), then (~,A) is a solution of 

(1.2) { i y k O ~  - m~p - caT~ -- 3,~Au~p = 0 in N3 
- 47rZ.k4o = j o  = 1~o[2 , -47rAAk = _ j k  in ~3 . 

l 3 The solutions of (1.2) are given by the critical points ~ E H ~ (N: , C 4) of the 
functional 

(1.3) 
f~ 1 m ca = 3 2 (iTO~kok~~ qo) -- -~ ('G ~) -- -~ IWI z 

1 f ~  JU(x)J"(Y) dx dy . 
4 3X1~3 Ix-yl 

Our main result concerning the Maxwell-Dirac equations is the 
following. 

Theorem 1. For any w E (0, m) there exists a non-zero critical point ~ of l~ 
in H  89 (N3 C 4). ~o is a smooth ]'unction of x, exponentially decreasing at infinity 
together with all its derivatives. Thefields O(xo, x) = e iwxo ~Pw, AU(xo, x) = jwp. y ~ l z  1 
are solutions of the Ma.~vell-Dirac system (M-D). 

The stationary solutions of the Klein-Gordon-Dirac equations are 
given by critical points ~ c H  89 (I~ 3, C 4) of the functional 

(1.4) 

f~  1 m ca 

1 /j[~ (~,qo)(x)(~,~)(y) e_Mlx_yldxdy " 
4 3x•3 I x-yl  

About this problem we will prove the following. 

Theorem 2. There are infinitely man), critical points of Jw for any w C (0,m). 
These critical points have the form 

(v(r  (lol) 
(1.5) ~(x) = \ i u ( r )  (~eioc~ 0) ' 
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Klein Paradox I
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Klein Paradox II

11



“Paradoxical” aspects of Dirac equation

The single particle Dirac equation describes relativistic parti-
cles of (negative) charge.

• Repulsive potential can produce bound states from neg-
ative energy spectrum

• Klein paradox: Propagation through large potential barri-
ers of height V

0

> E where transmission by Schrodinger’s
equation disallowed. Continuous spectrum of free Dirac
operator is

(�1,�mc2] [ [mc2,+1)

Electron with energy mc2 < E < �mc2 + V
0

< V
0

can
tunnel through barrier.
Should be explained though multi particle theory - see
discussion in of Bongaarts and Ruijsenaars (1976) in con-
text of C⇤ algebraic quantization of Dirac equation in ex-
ternal potential. Pessimistic conclusion on possibility of
unitary scattering operator.

12



Repulsion and formation of bound states

Work in 1 + 1 dimensional Minkowski space-time with coor-
dinates (x0 = ct, x1 = x) and metric c2dt2 � dx2. Can see
phenomenon very clearly.

�0 =

 

1 0

0 �1

!

, �1 =

 

0 i
i 0

!

(1)

Electromagnetic field consists only

E = F
01

=

1

c
˙A
1

� @x A
0

↵↵↵ = �0�1 =

 

0 i
�i 0

!

, ��� = �0 =

 

1 0

0 �1

!

,

(2)
and using the gauge in which A

1

is zero these equations re-
duce to

�A00
0

= �e ��� (3)

i ˙ + ic↵↵↵ 0
= +

mc2

~
��� � e

~
A
0

 . (4)

Consider bound state solutions of form:

 (t, x) = e�iEt/~
 

U(x)
V (x)

!

, A
0

(t, x) = �'(x) .
(5)
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Repulsion and formation of bound states II

�'00 = e
⇣

|U |2 + |V |2
⌘

,

~cV 0
= (E � e'�mc2)U ,

~cU 0
= �(E � e'+mc2)V .

Put E = �mc2+⌘ and observe that formally U/V = O(

1

c) =

O(✏). Rescale U = ✏˜U

�'00 = e
⇣

✏2|˜U |2 + |V |2
⌘

,

~V 0
+ (2m� ✏2⌘)˜U = � e' ✏2˜U ,

~˜U 0
+ ⌘ V = e'V .

This can be treated as perturbation of

� ~2

2m
� e'V = � ⌘ V

Now have an attractive potential for Schrodinger equation.
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I Maxwell Dirac equations

The starting point is the action functional

S =

Z



�1

4

Fµ⌫F
µ⌫

+ 

⇣

i~cD/A � mc2

~
⌘

 

�

dx dt

describing the interaction of a Dirac spinor field  with an
electromagnetic field in Minkowski space-time with coordi-
nates (x0 = ct,x) and metric c2dt2 � dx2. The electro-
magnetic field is given in terms of the potential A 1-form by
Fµ⌫ = @µA⌫ � @⌫Aµ. he Dirac operator is given by

D/A = �µ(@µ � ie

~c
Aµ)

where {�µ, �⌫} = 2gµ⌫, with g the (here Minkowski) metric.
Write  =  

†�0, where † means Hermitian conjugate. The
equations of motion are

@µF
µ⌫

= �e �⌫ ,

iD/A =

mc

~
 .

Gauge invariance:  ! eig and aµ ! aµ + @µg

where g = g(t, x) is a sufficiently regular function.
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Dirac �-matrices are:

�j =

 

0 �j
��j 0

!

, �0 =

 

I
2

0

0 �I
2

!

,

where I
2

is the 2 ⇥ 2 unit matrix and �j are the Pauli matri-

ces: �
1

=

 

0 1

1 0

!

, �
2

=

 

0 �i
i 0

!

, �
3

=

 

1 0

0 �1

!

. After

introduction of a space time splitting:

i@t = ↵ · (�ir� eA) +m� + eA0 ,

(c�2@2t ��)A0

= e ⇤ , (c�2@2t ��)A = e ⇤↵ .

Here ↵ = (↵1,↵2,↵3), and ↵j and � are the 4 ⇥ 4 Dirac
matrices:

↵j =

 

0 �j
�j 0

!

, � =

 

I
2

0

0 �I
2

!

,

with {�j}3j=1

the Pauli matrices. We will not distinguish lower
and upper indices j of ↵ and �, so that ↵j = ↵j, �j = �j.
The ↵-matrices and �-matrices are related by

�j = �↵j, 1  j  3; �0 = �.
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Maxwell-Dirac solitary waves

The solitary wave (�e�i!t, Aµ
(x)) satisfies the stationary

system

!� = ↵·(�ir�eA)�+m��+eA0�, ��Aµ
= e¯��µ�.

Theorem 3. There exists !⇤ > �m such that for ! 2 (�m,!⇤)
there is a solution to this system of the form

�(x,!) =

"

✏3�
1

(✏x, ✏)
✏2�

2

(✏x, ✏)

#

, ✏ =
q

m2 � !2,

with

� =

"

�
1

�
2

#

2 C1⇣
(0, ✏⇤) ;

⇣

H2

(R

3

; C
2

)�H2

(R

3

; C
2

)

⌘⌘

, ✏⇤ =

q

m2 � !⇤2,

and with

Aµ 2 C1⇣
(0, ✏⇤) ; ˙H1

(R

3,R)\L1
(R

3,R)

⌘

, 0  µ  3.

Above, ˙H1

=

˙H1

(R

3,R) is the homogeneous Dirichlet space
of L6 functions with kfk2

˙H1

=

R |rf |2 dx < 1. For small
✏ > 0, one has

k�
1

� ˆ�
1

kH2

+ k�
2

� ˆ�
2

kH2

= O(✏2),

where ˆ�
1

(y), ˆ�
2

(y) are of Schwartz class. The solutions
can be chosen so that in the nonrelativistic limit ✏ = 0 one
has

ˆ�
2

(y) = '
0

(y)n, ˆ�
1

(y) =

i

2m
� ·rˆ�

2

(y), (6)
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where n 2 C
2, |n| = 1, and '

0

is a strictly positive spher-
ically symmetric solution of Schwartz class to the Choquard
equation

� 1

2m
'
0

= � 1

2m
�'

0

�
✓

2

4⇡|x|⇤'
2

0

◆

'
0

, '
0

(x) 2 R, x 2 R

3.

(7)
The Dirac field � has exponential decay, while the electro-
magnetic potential satisfies

A0

(x) =

k�k2
L2

4⇡|x| + O(hxi�2

) , A(x) = O(hxi�2

)

as |x| ! +1 .

• Solutions axi- (not radially) symmetric
• Paradoxical repulsion/attraction behaviour indicates sin-

gle particle Dirac equation contains positronic element.
Semi-classical limit has such “mixed” characteristics.

• Need analysis of bound states in quantum field theory to
assess likely physical significance (if any).
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Motivation to study the Schwinger model

• Understand significance of bound states in quantum field
theory?

• Quantum electrodynamics in 1+3 dimensions not known
to exist; may not exist in usual mathematical sense. (QCD)

• Interesting mathematical structure and physical features:
mass generation, gauge invariance issues, fermion/boson
transformation...

• But: has no nonrelativistic limit - need massive fermions
for that.
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The Schwinger Model Quantum field theory in 1+1 dimen-
sions, zero mass for Dirac fermion:

S =

Z

�1

4

Fµ⌫F
µ⌫

+ iD/a dx dt , D/a = �µ(@µ�ieaµ)

�0 =

 

1 0

0 �1

!

, �1 =

 

0 i
i 0

!

, �5 = �0�1 =

 

0 i
�i 0

!

,

Phase invariance:  ! eig 

Chiral invariance:  7! ei�
5✓ .

Associated conservation laws:

j = jµ =  �µ = (j0, j1)

j5,µ =  �µ�5 = (j1, j0)

are classically conserved (@µjµ = 0 = @µj5,µ), but:

In the quantum theory only the first of these proper-
ties holds - there is an anomaly in the chiral conser-
vation law.

The precise mathematical expression of the anomaly is

@µj
5,µ

= �1

⇡
E,

where E = ȧ� @a
0

is the electric field. This is an equality of
operator valued distributions.
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Mass generation and Bosonization Together with equation of
motion (Maxwell) this implies

(2+

e2

⇡
)E = 0

in place of 2E = 0 - mass generation. Crucial issues which
arise:

• Requirement of energy bounded below =) introduce
fermionic Fock space with (non-interacting) vacuum ⌦

0

on which gauge group acts non trivially
• Enforcing gauge invariance leads to modified Hamilto-

nian and breaking of chiral symmetry
• Existence of gauge invariant (interacting vacuum) 

0

but
at expense of chiral anomaly.

• Anomaly+bosonization leads to real scalar field with mass
e/

p
⇡:

HS =

1

2

Z L

0

✓

⇧(x)2 + @�(x)2 +

e2

⇡
�(x)2

◆

dx ,

to be expected from Schwinger’s work (1962).
• Fundamental excitations are bound states of fermion/anti-

fermion
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Gauge invariance and large gauge transformations Phase in-
variance localises to gauge invariance:  ! eig and aµ !
aµ + @µg where g = g(t, x) is a sufficiently regular function
which is L periodic in x. Coulomb gauge: choose periodic
g so that spatial component a

1

= a is constant: cannot be
made zero with periodic g. This leave residual gauge invari-
ance by the group

Z = {gN(x) = e2⇡iNx/L}N2Z
of large or modular gauge transformations.

• a defined mod 2⇡/L - takes values in the circle S1

=

R/(2⇡/L) which is dual to the spatial domain R/L.
• careful treatment of the action of the group Z illuminates

greatly the role of gauge invariance in producing the anomaly
and the interacting vacuum.

• Noninteracting Fock vacuum is not gauge invariant ; phys-
ical (interacting) vacuum is gauge invariant.

• Vacuum of YM
4

?
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Hamiltonian and Quantization I

Fermi procedure leads to Hamiltonian
Z L

0

1

2e2
ȧ2� †⇣i�5(@�ia) 

⌘

+

1

2

e2( † )(��)

�1⇤( † ) dx .

Here (��)

�1 means the kernel of the operator �� = �@2
on [0, L] with periodic boundary conditions, ⇤ is convolution
and @ = @x. Longitudinal component of the electric field has
been integrated out leaving only the transverse component
Etr

= ȧ.

Associated classical equations of motion:

i ˙ = �i�5(@ � ia )� a
0

 

˙Etr
=

e2

L

Z L

0

 †�5 dx , ȧ = Etr ,
(8)

where a
0

is determined by the Gauss law constraint ��a
0

=

�e2 † = �e2 j0 . We will write j0 =  † and j1 =

 †�5 for the currents and Q =

RL
0

j0 dx ,Q5

=

RL
0

j1 dx
for the corresponding charges.

To quantize the theory it is necessary to associate operators
to the fields which satisfy the canonical relations:

{ ↵(t, x), †
�(t, y)} = �↵��(x� y) (9)

(other anti-commutators being zero), and

[Etr, a] = [ȧ, a] = �ie2

L
(10)

(other commutators being zero).
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Energy Levels

In Coulomb gauge with a = constant the operator

�i�5(@ � ia )

can be diagonalized :

�5uR = uR and �5uL = �uL .

giving spectrum

± (kn + a) , kn =

2n⇡

L
n 2 Z

Second quantization with Dirac sea leads to Hamiltonian
X

(kn + a) a†n,Ran,R � X

(kn + a) a†n,Lan,L
and charge operator

X

a†n,Lan,L +

X

a†n,Ran,R
commutation relations

{an,L, a†m,L} = �nm {an,R, a†m,R} = �nm
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In positive energy representation define

bn = aRn (n � 0) bn = aLn (n < 0)

and

cn = aR,†
�n (n > 0) cn = aL,†�n (n  0)

then
X

m2Z
|km| (b†mbm + c†mcm) � aQ5

Q5

=

X

n�0

b†nbn � X

n<0

b†nbn � X

n>0

c†ncn +

X

n0

c†ncn

while charge operator is

Q =

⇣

b†nbn � c†ncn
⌘

.

• Energy now bounded below, BUT
• At expense of introducing vacuum which is not gauge in-

variant
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Quantization of electric field Use the Schrödinger representa-
tion in which a

1

= a is represented by coordinate multiplica-
tion on L2

([0, 2⇡L ]), while

Etr
= �ie2

L

d

da
.

In the absence of interaction with any matter fields the elec-
tromagnetic field is described by the Hamiltonian

Hem = � e2

2L

d2

da2

on L2

([0, 2⇡L ]) with periodic boundary conditions

• The large gauge transformations Z are the reason that
periodic boundary conditions are appropriate

• Periodic boundary conditions have to be modified in the
presence matter.
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Positive energy representation Interpret the relations (9) :

 =

1p
L

X

n2Z

⇣

bnune
iknx

+ c†nvne�iknx
⌘

, kn =

2n⇡

L
(11)

with

{bn, b†n0} = {cn, c†n0} = �nn0 (12)

(other anti-commutators being zero) and

un = uR1{n�0} + uL1{n<0} ,
vn = uR1{n>0} + uL1{n0} .

(13)

The uL,R are eigenvectors of �5 with �5uR = uR and �5uL =

�uL. The b†m , bm (resp. c†m , cm) are fermionic (resp. anti-
fermionic) creation, annihlation operators acting on the zero
charge fermionic Fock space H

0

.

Recall the fermionic Fock space: there is a (non-interacting)
vacuum ⌦

0

and associated finite particle states

⌦

m,n =

Y

b†mi
c†nj⌦0

(14)

where m = {mi}Mi=1

and n = {nj}Nj=1

range over subsets
of Z of arbitrary finite size. Let F be the linear span of all
the ⌦

m,n, let F
0

⇢ F be the zero charge subspace in which
there are equal numbers of fermions and anti-fermions, i.e.
M = N . The zero charge Fock space H

0

is the comple-
tion of F

0

in the Fock space norm k · k, and the vectors in
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(14) constitute an orthonormal basis. There is a self-adjoint
operator which extends the operator given on F

0

by

Q5

=

X

n�0

b†nbn � X

n<0

b†nbn � X

n>0

c†ncn +

X

n0

c†ncn .

which will also be denoted Q5; it will be referred to as the axial
(or chiral) charge operator. Define FP

0

⇢ F
0

= {Ker (Q5 �
2P )}\F

0

. The corresponding completions are denoted HP
0

,
and are the orthogonal eigenspaces arising in the spectral
decomposition of Q5.



Schwinger regularization

Q5,reg
=

1

L
lim

✓!0

X

n,n0

ZZ

⇣

b†n0u
†
n0e

�ikn0y
+ cn0v

†
n0e

+ikn0y
⌘

eia(y�x)

⇥ �5
⇣

bnune
iknx

+ c†nvne�iknx
⌘

�✓(x� y) dy dx ,

and similarly for Hamiltonian. Computation gives:

Q5,reg
=

X

n�0

b†nbn�
X

n<0

b†nbn�
X

n>0

c†ncn+
X

n0

c†ncn�
aL

⇡
�1 .

Crucial points:

• Requirement of realizing Hamiltonian in some represen-
tation where it is semi-bounded leads to introduction of
vacuum (“sea-level”) which is not gauge invariant.

• Introduction of non-gauge-invariant vacuum means that
Q5 re-interpreted in associated representation no longer
gauge invariant or conserved.

• Schwinger regularization leads to introduction of Q5,reg

gauge invariant but still not conserved (evolves in simple
way).

• Relatively mild “renormalizations” of Hamiltonian intro-
duced - normal ordering and ei

R

a; no subtractions of
infinities.
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Gauge invariant Hamiltonian Schwinger regularization leads
to Hamiltonian: H = H

0

+ : Hcoul : , where

H
0

= � e2

2L

d2

da2
+

X

m2Z
|km| (b†mbm+c†mcm)� a2L

2⇡
� aQ5,reg ,

(15)
and

Hcoul =
e2L

2

X

m 6=0

1

k2m
|0(�m)|0(m) (16)

is the Coulomb energy, written in terms of the fourier modes
of the current operator

j0 =

X

|0(m)eikmx .

The symbol Q5,reg indicates the regularized axial charge op-
erator given by:

Q5,reg
=

X

n�0

b†nbn�
X

n<0

b†nbn�
X

n>0

c†ncn+
X

n0

c†ncn�
aL

⇡
�1 .

(17)
This expression is also derived from Schwinger regulariza-
tion; corresponding expression for the regularized ordinary
charge is in fact unchanged, i.e.

Q = Qreg
=

X

n2Z

⇣

b†nbn � c†ncn
⌘

.
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The total Hilbert space for the theory can now be defined as

K = { =  (a) 2 H
0

:  2 L2

([0,
2⇡

L
];H

0

)} , (18)

with norm defined by k k2K =

R

2⇡
L

0

k k2 da where k · k is
the Fock space norm.
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Action of Z and twisted periodicity

We define a unitary action of the group Z = {gN(x) =

e2⇡iNx/L}N2Z of large gauge transformations on H
0

. The
formulae are best motivated by comparison with the natural
expressions in the infinite Dirac sea. There is a unitary oper-
ator �, corresponding to the generator g

1

, whose action on
the non-interacting vacuum state is

�⌦

0

= ⌦�1

= b†�1

c†
1

⌦

0

. (19)

The action on Fock space is then determined by specifying
the action on the set of creation and annihlation operators, on
which it acts as a modified shift operator:

bn ! �bn�
�1

= bn�1

, n 6= 0 , b
0

! �b
0

�

�1

= c†
1

cn ! �cn�
�1

= cn+1

, n 6= 0 , c
0

! �c
0

�

�1

= b†�1

with corresponding relations for the adjoints:

b†n ! �b†n��1

= b†n�1

, n 6= 0 , b†
0

! �b†
0

�

�1

= c
1

c†n ! �c†n��1

= c†n+1

, n 6= 0 , c†
0

! �c†
0

�

�1

= b�1

(20)

Lemma 4. These formulae determine an action of Z on H
0

generated by �, with the property that �⌦P = ⌦P�1

for
all P . Similarly there is a corresponding modified shift ac-
tion for the inverse �

�1 with the relations inverted, so that in
particular �

�1 · ⌦
0

= b†
0

c†
0

⌦

0

= ⌦

1

and more generally
�

�1 ·⌦P = ⌦P+1

.
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The transformation � commutes with Q and so preserves H
0

,
but it does not commute with Q5: for example b†

3

c†
2

b†
0

c†
1

⌦

0

is
mapped into b†

2

c†
3

c†
2

b†�1

⌦

0

, with the eigenvalue of Q5 reduc-
ing by 2. Formally Q5

�

�1

= �

�1

(Q5 � 2) on F
0

. The in-
terpretation of all these formulae is that large gauge transfor-
mations can create and annihlate fermion/anti-fermion pairs
in a way which seems naively to change the axial charge: an
anomaly. Nevertheless we have:
Lemma 5. The Schwinger regularizations of the axial charge
and of the Hamiltonian are unchanged by the action of Z.

Now the gauge transformation g
1

acts on the connection as
a ! a+

2⇡
L , and hence the requirement of gauge invariance

means that we should regard the Hamiltonian H as an un-
bounded operator defined on K with the following boundary
conditions of twisted periodicity:

 (

2⇡

L
) = �

�1

 (0) and  

0
(

2⇡

L
) = �

�1

 

0
(0) . (21)

(writing prime for d
da). A suitable dense domain for the Hamil-

tonian is D, the space of smooth functions taking values in
F
0

which satisfy this twisted periodicity condition, i.e. the re-
striction to [0, 2⇡L ] of the smooth F

0

-valued functions which
satisfy (a+

2⇡
L ) = �

�1

 (a) for all a 2 R.
Lemma 6. D ⇢ K is dense in the norm k · kK on K. The
integration by parts formula h 0,�iK = �h ,�0iK holds
for ,� in D.



Remark 7. The Fock vacuum ⌦
0

, thought of as an element
of K which is independent of a, does not satisfy (21) and is
not gauge invariant. It follows that the interacting (or physical)
vacuum cannot be proportional to ⌦

0

, or indeed any of the
unexcited states ⌦P , since Z maps these states into one an-
other, thus destabilizing the Fock vacuum. The physical vac-
uum is a linear combination of states of the form fP (a)⌦P .



Hamiltonian formulation of Schwinger
Theorem 8. The Hamiltonian is bounded below and essen-
tially self-adjoint on D ⇢ K. Vacuum given by:

 

0

(a) =

X

P2Z
f(a� 2⇡

L
(P � 1

2

))⌦P ,

with

f(ã) =

L
1

4

⇡
3

8e
1

4

e
�Lã2

2

p
⇡e

and⌦0
P obtained from unexcited states by unitary Bogoliubov

transformation. Anomaly equation can be derived as a con-
sequence of the Heisenberg equation of motion.

• Proof uses Lieb-Mattis bosonization (Luttinger model).
Gauge invariance couples together the different sectors
with Q5

= 2P as above.
• There is a nontrivial action of M = Z, the modular group

of large gauge transformations, on the non-interacting
Fock vacuum ⌦

0

given in which maps ⌦
0

to the unex-
cited states⌦P . The⌦P are eigenstates of the (unregu-
larized) axial charge operator Q5 with the following prop-
erty: no excited fermionic state is occupied which has
higher energy than an unoccupied one (amongst states
with the correct sign of Q5).

• It is necessary to take into account this action of Z in
the definition of the Hamiltonian and currents in order to
obtain the “correct” gauge invariant expressions. These
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expressions, derived using only Schwinger point-splitting
regularization, contain terms which give rise to the anomaly
in the chiral conservation law.

• Even without “turning on” the Coulomb interaction the in-
teraction between the fermions and the spatial compo-
nent of the electromagnetic potential a destabilizes the
gauge variant non-interacting vacuum ⌦

0

, producing an
interacting vacuum which is gauge invariant (Manton).
There is an explicit formula for the interacting vacuum as
a linear combination of segments of a gaussian tensored
with ⌦P , wrapped around the circle S1

= R/(2⇡/L).
• The effect of turning on the Coulomb interaction is to

transform the unexcited states⌦P into dressed versions.



Schwinger Model in External Potential

Introduce external classical potential by adding
R

AµJext,µdxdt

to the action

S =

Z



� 1

4e2
Fµ⌫F

µ⌫
+ 

⇣

i~cD/A �m
⌘

 

�

dx dt

where Jext is given smooth (for example). The equations of
motion are

@µF
µ⌫

= �e
✓

 �⌫ + Jext,⌫
◆

,

iD/A =

mc

~
 .

Can write A = a+Aext and carry out analysis as before.

• Non-autonomous evolution can be constructed in the space
K by a time discretization process.

• Bosonization leads to scalar field coupled to the external
field Aext but through the topological coupling term

Z

✏µ⌫Aext
µ @⌫� dxdt

where ✏µ⌫ = �✏⌫µ, rather than usual minimal “covariant
derivative” coupling (which doesn’t make sense for real
field).
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Construction of Evolution Operator

In non-autonomous case need to solve

@t = A(t) ,  (s) =  s

as  (t) = U(t, s) s use Kato’s notion of a stable family of
generators {A(t)} on a Banach space X with norm k k.

Assume either of the following equivalent conditions hold for
some positive M and �:

•
�

�

�

�

QN
j=1

⇣

A(tj) + �
⌘�1

�

�

�

�

 M(� � �)�N where here

and below {tj} is any nondecreasing finite set of times
and� > � ,

•
�

�

�

�

QN
j=1

exp[�sjA(tj)]
�

�

�

�

 M exp[+�
PN

j=1

sj] , for any

collection of positive numbers {sj}.

Assume existence of dense ctsly embedded subspace

Y ⇢ DomA(t) 8t ,
restricted to which each A(t) generates a strongly cts group
on Y satisfying k exp[�sA(t)]k  M exp[s�]. Then the
{A(t)} generate a strongly cts evolution operator U(t, s) sat-
isfying

kU(t, s)k  M exp[�|t� s|] , and

U(t, r) = U(t, s)U(s, r) .
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TO DO

• Basic excitations of Schwinger model and fermion/ant–
fermion bound states. Massless can be thought of as ex-
treme relativistic limit - are these bound states connected
to bound states in non-relativistic limit? Need to develop
analysis of non-relativistic limit in QFT.

• Non-relativistic limit of P (�) The complex ��4 field the-
ory in 1+1 dimensions: prove non-relativistic limit is non-
relativistic bosons with point interaction 3�/4m2�(x

1

�
x
2

. Partial results only (Dimock) via integral equations
(Dyson, Bethe-Salpeter equations).

• Non-relativistic limit of massive Schwinger model Relate
to bound states of classical Maxwell-Dirac system. Par-
tially proved Coleman correspondence suggests no fermionic
states.
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I Classical Nonrelativistic particle

Particle: mass M concentrated at a point

X(t) 2 R

3 at time t

No internal structure.

Newton : if no forces act on a particle it moves at uniform
velocity

d2

dt2
= 0

Conservation laws:

=

d

dt
(momentum)

E =

2

2

(kinetic energy)

People used to think that ... when a thing moves it
is in a state of motion. This is now known to be a
mistake. Bertrand Russel
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II Quantum Nonrelativistic Particle

The energy momentum relation E =

2

2

turns into a dispersion
relation

1

~
!k =

k2

2

for waves

exp[ikx� i!kt]

which are the basic solutions of the Schrödinger equation:

i~@ 
@t

= �~2

2

@2 

@x2

with initial data  (x,0) =  
0

(x) .

Quantum particle

• still has no internal structure;

• lives in a state characterized e.g. by Fourier transform

f(k) =

ˆ 
0

(k) 2 L2

as

 (x, t) =

1p
2⇡

Z

f(k) exp[ikx� i!kt] dk
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III Relativistic Particle The relativistic energy momentum rela-
tion

E2

=

2

+ m2

turns into the dispersion relation

!2

k = k2 + m2

(~ = 1)

and thence the relativistic wave equation

@2 

@t2
� @2 

@x2
+ m2 = 0 .

Problem of negative energies E = ±
q

2

+m2 resolved by
saying

•  is not a wave function;

• it is a quantum field operator describing creation and an-
nihilation of particles;

• interpretation as multi-particle theory essential.

•  is a distribution taking values in space of unbounded
operators on a Hilbert space, constrained by Heisenberg
relation

[ (t, x) , ˙ (t, y)] = i�(x� y) ,

(The Reason for Anti-particles by Richard Feynman.) Leads
to three sources of trouble: ultra-violet, infra-red and particle number.
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IV Fock space is the (complete) Hilbert direct sum of the sym-
metric n-fold tensor powers of L2

(R), i.e.

H =

1
M

n=0

Sym

n
(L2

(R)) .

A typical element, 2 H, is a sequence of functions { n}1n=0

,
where n 2 L2

(R

n
) is symmetric with respect to interchange

of any pair of coordinates.

k k2 =

X k nk2L2

(Rn)
.

The vacuum has  
0

= 1 and  n = 0 for n � 1. Call it ⌦
or |0 i.

Annihilation and creation operators are given, respectively, by

(ak )n�1

(k
1

, . . . , kn�1

) =

p
n n(k, k

1

, . . . , kn�1

) ,

(a†k )n+1

(k
1

, . . . , kn+1

) =

n+1

X

j=1

�(k � kj)p
n+1

 n(k
1

, . . . ,ckj, . . . , kn+1

) .

(Really define operator valued distributions or quadratic forms.)
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V The Free Field

Given dispersion relation !k =

q

k2 + 4m2, we define the
fields

'(x) =

1p
2⇡

Z

1p
2!k

⇣

ake
ikx

+ a†ke
�ikx

⌘

dk , and

⇡(x) =

1p
2⇡

Z

�i
r

!k
2

⇣

ake
ikx � a†ke

�ikx
⌘

dk .

Really operator valued distributions

'(f) =

Z

1p
2!k

⇣

ak ˆf(�k) + a†k ˆf(k)
⌘

dk ,

where ˆf(k) = (2⇡)�1/2 R e�ikxf(x) dx 2 S(R) is the
Fourier transform.

Notice vacuum expectation infinite:

h0 |'(x)2|0 i = k'(x)⌦k2 =

1

4⇡

Z dk

!k
= +1 .

Wick ordering - move annihilation operators to right - gives

h0 : |'(x)2 : |0 i = 0 .

Physically : removes self interaction of particles on them-
selves.
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VI Regularized fields Let �
1

2 C1
0

(R) be a nonnegative,
even function with �

1

(x) = 0 for |x| � 1, and satisfying
R

�
1

(x) dx = 1. For  > 0 define �(x) = �
1

(x), so that
the operator �⇤ is an approximation to the identity. Regular-
ized fields:

'(x) =

Z �(k)p
2!k

⇣

ake
ikx

+ a†ke
�ikx

⌘

dk ,

⇡(x) =

Z

�i�(k)
r

!k
2

⇣

ake
ikx � a†ke

�ikx
⌘

dk ,

where �(k) = �(k/) with �(k) =

ˆ�
1

(k).

Regularization amounts to a smooth momentum cut-off at
scales large compared to  since �(k) =

ˆ�
1

(k/) :

� = h0 |'(x)2|0 i =

Z |�(k)|2 dk
2!k

< +1 .

But Wick ordering interferes with boundedness below:

: '(x)
4

: = '(x)
4 � 6�'

2

 +3�2
= (' � 3�)

2 � 6�2
� �6�2

so the pointwise lower bound diverges as cut-off removed.
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Wick Operators Given a function or distribution w 2 S(Rm+n
),

writtenw = w(k, k0) for k = (k
1

, . . . km) and k0 = (k0
1

, . . . k0n),
the Wick operator on Fock space is given by

w =

Z

R

n+m
a†(km) . . .a†(k

1

)w(k, k0)

⇥ a(k0
1

) . . . a(k0n)dkdk0 .

Here dk0 = Qn
j=1

dk0j and dk =

Qm
j=1

dkj .

Writing =

R

a†(k)a(k) dk for the number operator as usual,
we have the following bounds in the case that the kernel is
square integrable:

k(1+)

�m/2
w (1+)

�n/2k  kwk
and, more generally for a+ b � m+ n,

k(1+)

�a/2
w(1+)

�b/2k
 (1 + |m� n||m�n|/2

)kwk
where on the left hand side k · k means Fock space operator
norm, while on the right hand side kwk means the norm of the
kernel w as an operator Symn

(L2

(R)) ! Sym

m
(L2

(R)) .
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The Wick polynomial
R

: '(x)4 : b(x) dx determined by
a regularized field and a spatial cut-off b 2 L1

(R) \ L2

(R)

determines a Wick operator (with obvious conventions for j =

0,4):

4

X

j=0

 

4

j

!

Z

R

4

a†(k
1

) . . . a†(kj)w(k, k0)

⇥ a(�kj+1

) . . . a(�k
4

)dk
1

. . . dk
4

where

v(k) =

ˆb(�
4

X

j=1

kj)
4

Y

j=1

�(kj)

2!kj
2 S 0

(R

4

) .

The preceding Wick operator bounds applied to this give for
any ✏ > 0 a number C✏ such that

�

�

�

�

�

�

R

: '(x)4 : b(x) dx� R

: '0(x)
4

: b(x) dx

(1+)

4

�

�

�

�

�

�

 C✏

(min{,0})12�✏
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VII Schrödinger equation:

i~@ 
@t

= �~2

2

@2 

@x2
+ V  

with initial data  (x,0) =  
0

(x) .

Feynman (PhD thesis, 1942) reformulated quantum mechan-
ics :

 (x, t) =

Z

exp

n i

~

Z t

0

⇣

1

2

˙X2 � V (X(s))
⌘

ds
o

⇥  
0

(X(t))
Y

0st

dX(s)

in terms of “complex probability amplitudes” by summing over
paths with X(0) = x. Put ~ = 1 from now on.

Mathematical analysis of semi-group via the Feynman-Kac
formula: after Wick rotation

t ! �it

to Euclidean time exp[�tH] 
0

(x) is given by

x



exp{�
Z t

0

V (X(s))ds
o

 
0

(X(t))
�

=

Z

exp

n

�1

~

Z t

0

V (X(s)) ds
o

 
0

(X(t)) dx(X)

(expectation w.r.t. Wiener measure dx on paths starting at
x = X(0).)
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VIII Rewrite Feynman-Kac formula as
⇣

F , e�tH G
⌘

L2

=

Z

x

✓

F (x) e�
R t
0

JsV dsJtG
◆

dx

where JsV : C(R) ! R is the function on path space X 7!
V (X(s)) etc.

X: Gaussian process with covariance 1

2

min{s, t}, i.e. evo-
lution is obtained by averaging over all Brownian paths with
diffusion 1

2

.

For an oscillator

i
@ 

@t
= �1

2

@2 

@x2
+

1

2

!2x2 + V  

the formula generalizes via introduction of the oscillator process
defined as the Gaussian process indexed by t 2 R with co-
variance

(

q(t)q(s)
)

=

e�!|t�s|
2!

Averaging over oscillator process we can write  = e�tH 
0

where

(

F , exp[�tH]G
)

=

✓

J
0

F e�
R t
0

JsV dsJtG
◆

where again JsV : C(R) ! R is the function on path space
with value V (q(s)) .
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IX Classical Harmonic Oscillator: Hamiltonian

Hosc =

1

2

⇣

p2 + !2 x2
⌘

Classical free field

@2�

@t2
� @2�

@x2
+ 4m2� = 0

we have, with ⇡ = @t� =

˙�, the Hamiltonian

H =

1

2

Z

 

⇡2 +

✓

@�

@x

◆

2

+ 4m2�2
!

dx

or, with, ˆ�(k) = (2⇡)�
1

2

R

e�ikx�(x)dx etc

H =

1

2

Z

⇣

|⇡̂(k)|2 +

⇣

k2 + 4m2

⌘

|ˆ�(k)|2
⌘

dk

Free field: an infinite collection of oscillators of frequency !k =

q

k2 + 4m2.

Nelson: used this to generalize Feynman-Kac to quantum
fields, to describe semi-group e�tH acting on the Fock space.
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X Feynman-Kac-Nelson Formula We need two facts

• 9 a Gaussian measure � on S 0
(R) giving a model of

Fock space (Schrödinger representation) such that

=

M

n
SymnL2

(R) = L2

�S 0
(R), d�

�

(

�(f)�(g)
)

=

Z

�(f)�(g) �(d�)

=

Z f(k)g(k)

2!k
dk .

• 9 a Gaussian measure µ on S 0
(R

2

) such that

(

�(f)�(g)
)

=

Z

�(f)�(g)µ(d�)

=

ZZZ f(s, k)e�|t�s|!kg(t, k)
2!k

dkdsdt .

⇣

F , e�tH G
⌘

L2

(�)
=

✓

J
0

F e�
R t
0

JsV dsJtG
◆
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Here � is the spatial Fourier transform of Euclidean field

�(t, k) = (2⇡)�
1

2

Z

e�ikx
(t, x)dx

i.e. arguments are time t and spatial Fourier variable k . The
Euclidean field is Gaussian process on S 0

(R

2

) with covari-
ance

✓

�E(f)�E(g)
◆

=

1

(2⇡)2

Z

R2

ˆf(k)ĝ(k)

k2 + 4m2

dk .

At each time t there exists an isometry Jt : L2

(d�) ! L2

(dµ)

given on Wick monomials by

Jt : �(f)
n
:!: �(t, f)n :

Wick monomials obtained by orthogonalization process with
respect to the corresponding Gaussian measure. They gen-
erate polynomials which are dense in the corresponding L2

space.



XI Glimm-Jaffe PSC Expansion

Introduce an overall large upper momentum cut-off , and
sequence


1

< 
2

< 
3

< · · · < n�1

<   n n = e
p
⌫

and corresponding cut-off Hamiltonians h⌫ = H⌫ for 1 
⌫  n � 1, and then and hn = H if ⌫ � n . Want bounds
independent of  or equivalently n.

Iterated Duhamel:

e�tH
= e�th

1 �
Z t

0

e�(t�s
1

)h
2

(H � h
1

)e�s
1

h
1 ds

1

�
Z t

0

Z t

s
1

e�(t�s
2

)h
3

(H � h
2

)e�(s
2

�s
1

)h
2

⇥ (H � h
1

)e�s
1

h
1 ds

2

ds
1

. . .

� (�1)

n
Z t

0

· · ·
Z t

sn�2

e�(t�sn�1

)H
(H � hn�1

)

⇥
n�1

Y

⌫=2

⇣

e�(s⌫�s⌫�1

)h⌫
(H � h⌫�1

)

⌘

⇥ e�s
1

h
1

n�1

Y

j=1

dsj .
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The aim is to prove an operator lower bound H � �c
0

>

�1 which is uniform in , in spite of the fact that pointwise
H

I is not uniformly bounded below. Indeed normal ordering
gives

: '(x)
4

: = '(x)
4 � 6'(x)

2�+3�2
� �6�2
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