SINGULAR PERTURBATIONS OF DIRAC HAMILTONIANS: selfadjointness and spectrum.

Luis Vega

Como, February 9th, 2017

The Operator

- $\partial_t \psi = iH\psi$; $H = H_0 + \mathbb{V}$, $\psi = \psi(x,t)$, $\mathbb{V}(x)$ hermitian
- $H_0 = \frac{1}{i}\alpha \cdot \nabla + m\beta$
- $H_0^2 = -\Delta + m^2$

$$\alpha \cdot \alpha = 1 \qquad \alpha = (\alpha_j)$$

$$\alpha \beta + \alpha \beta = 0$$

$$\alpha_j \alpha_k + \alpha_k \alpha_j = 0 \qquad j \neq k \quad ; \quad \alpha_j^2 = 1 \qquad j = 1, 2, 3$$

- If $x \in \mathbb{R}^3$ then $\psi = \begin{pmatrix} \phi \\ \chi \end{pmatrix}$, $\phi, \chi \in \mathbb{C}^2$ (spinors).
- \mathbb{V} : "critical" $\frac{1}{\lambda}\mathbb{V}\left(\frac{x}{\lambda}\right) \sim \mathbb{V}(x)$

Example: Coulomb
$$\mathbb{V} = \frac{-\lambda}{|x|} \mathbb{1}$$

General Questions

(a) Self-adjointness.

(b) Spectrum: Characterization of the ground state by the "right inequality".

Similar questions for a non linear \mathbb{V} always assume some smallness condition on \mathbb{V} .

(c) What is a small/big perturbation of H_0 ?

Coulomb Potential

•
$$H_0 - \frac{\lambda}{|x|}$$

- (a) Self-adjointness: Rellich '53, Schminke '72, Wust '75, Nenciu '76, Kato '80- '83 (Kato-Nenciu inequality) Final answer: $|\lambda| < 1$.
- (b) "Ground state" (λ > 0) Minimization process (Dolbeault,
 Esteban, Séré '00):
 - Variational inequality for $\phi\left(\psi = \begin{pmatrix} \phi \\ \chi \end{pmatrix}\right)$.
 - Hardy-Kato-Nenciu type inequalities (**Dolbeault**, **Duoandikoetxea**, **Esteban**, **Loss**, **V.** '00).

Recall Birman–Schwinger principle:

$$\frac{d}{da} \left(\frac{1}{\lambda(a)} \right) \sim \langle (H - a)^{-2} g_a, g_a \rangle = \| (H - a)^{-1} g_a \|^2 \ge 0$$

(assume g_a independent of a)

This suggests another way of obtaining the ground state for the Coulomb potential $V(x) = -\frac{\lambda}{|x|}$:

$$\frac{m^2 - a^2}{m^2} \int \frac{|\psi|^2}{|x|} \le \int \left| \left(\frac{1}{i} \alpha \cdot \nabla + m\beta + a \right) \psi \right|^2 |x|$$

(Arrizabalaga, Duoandikoetxea, V. '13; Cassano, Pizzichilo, V. '17)

The inequality is optimal and it is achieved for A > 0 by the ground state of $V_a(x) = -\frac{m^2 - a^2}{m^2} \frac{1}{|x|}$.

The proof is a consequence of the "uncertainty principle".

•
$$2\operatorname{Re}\langle S\psi, A\psi\rangle = \langle (SA - AS)\psi, \psi\rangle \text{ if } S^* = S \text{ and } A^* = -A.$$

•
$$2\text{Re} \langle A_1 \psi, A_2 \psi \rangle = -\langle (A_1 A_2 + A_2 A_1) \psi, \psi \rangle$$
 if $A_1^* = -A_1$ and $A_2^* = -A_2$.

In our case the right choice is:

$$2\operatorname{Re}\left\langle \left(\underline{\alpha\cdot\nabla+i(m\beta+a)}\right)\psi,\left(1+\sigma\cdot L\right)\mathbb{1}\,\alpha\cdot\frac{x}{|x|}\left(\underline{\frac{a}{m}\beta+1}\right)\right\rangle.$$

$$A_{1}$$

Electrostatic Shell Interactions:

 $\Omega \subset \mathbb{R}^3$ bounded smooth domain

 $\sigma = \text{surface measure on } \partial \Omega$

 $N = \text{outward unit normal vector field on } \partial \Omega$

Electrostatic shell potential $V_{\lambda} = \lambda \delta_{\partial \Omega}$:

$$\lambda \in \mathbb{R}, \qquad V_{\lambda}(\varphi) = \frac{\lambda}{2}(\varphi_{+} + \varphi_{-})$$

 $\varphi_{\pm} = \text{non-tangential boundary values of } \varphi : \mathbb{R}^3 \to \mathbb{C}^4$ when approaching from Ω or $\mathbb{R}^3 \setminus \overline{\Omega}$

Electrostatic shell interaction for $H: H + V_{\lambda}$

(a) Self-Adjointess

If
$$\lambda \neq \pm 2 \implies H + V_{\lambda}$$
 is self-adjoint on $\mathcal{D}(H + V_{\lambda})$.

$$\left(\begin{array}{l} \textbf{[Arrizabalaga, Mas, V., 2014],} \\ \textbf{more general [Posilicano, 2008]} \\ \boldsymbol{\Omega} \ \textbf{ball} \ \longrightarrow \textbf{[Dittrich, Exner, Seba, 1989]} \end{array} \right)$$

$$a \in (-m, m)$$

$$\phi^{a}(x) = \frac{e^{-\sqrt{m^{2} - a^{2}} |x|}}{4\pi |x|} \left[a + m\beta + \left(1 - \sqrt{m^{2} - a^{2}} |x| \right) i\alpha \cdot \frac{x}{|x|^{2}} \right]$$

= fundamental solution of H-a

$$\mathcal{D}(H+V_{\lambda}) = \Big\{ \varphi: \quad \varphi = \phi^0 * (Gdx + gd\sigma), \ G \in L^2((R)^3)^4 \ g \in L^2(\partial\Omega)^4,$$

$$\lambda \left(\phi^0 * (Gdx) \right) \big|_{\partial\Omega} = - \left(1 + \lambda C_{\partial\Omega}^0 \right) g) \Big\}$$

where
$$C^a_{\partial\Omega}(g)(x) = \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} \phi^a(x-y)g(y)d\sigma(y)$$
, $x \in \partial\Omega$.

(b) Point Spectrum on (-m, m) for $H + V_{\lambda}$

Birman–Schwinger principle: $a \in (-m, m), \quad \lambda \in \mathbb{R} \setminus \{0\},$ $\ker(H + V_{\lambda} - a) \neq 0 \iff \ker\left(\frac{1}{\lambda} + C_{\partial\Omega}^{a}\right) \neq 0$

Properties of $C^a_{\partial\Omega}$, $a \in [-m, m]$:

- (a) $C_{\partial\Omega}^a$ bounded self-adjoint operator in $L^2(\partial\Omega)^4$.
- (b) $\left[C_{\partial\Omega}^a(\alpha\cdot N)\right]^2 = -\frac{1}{4}I_d.$ $\left(\alpha\cdot N = \sum_{j=1}^3 \alpha_j N_j \begin{array}{c} \text{multiplication} \\ \text{operator} \end{array}\right)$

$$\ker\left(\frac{1}{\lambda} + C_{\partial\Omega}^{a}\right) \neq 0 \quad \begin{cases} \stackrel{\text{(a)}}{\Longrightarrow} & |\lambda| \geq \lambda_{l}(\partial\Omega) > 0 \quad \text{and} \quad \lambda_{l}(\partial\Omega) \leq 2 \\ \stackrel{\text{(b)}}{\Longrightarrow} & |\lambda| \leq \lambda_{u}(\partial\Omega) < +\infty \quad \text{and} \quad \lambda_{u}(\partial\Omega) \geq 2 \end{cases}$$

Therefore, $\ker(H + V_{\lambda} - a) \neq 0 \implies |\lambda| \in [\lambda_l(\partial\Omega), \lambda_u(\partial\Omega)]$

Theorem [AMV2016].– $\Omega \subset \mathbb{R}^3$ bounded smooth domain. If

$$m \frac{\operatorname{Area}(\partial \Omega)}{\operatorname{Cap}(\overline{\Omega})} > \frac{1}{4\sqrt{2}},$$

then

$$\sup \{|\lambda| : \ker(H + V_{\lambda} - a) \neq 0 \text{ for some } a \in (-m, m)\}$$

$$\geq 4 \left(m \frac{\operatorname{Area}(\partial \Omega)}{\operatorname{Cap}(\overline{\Omega})} + \sqrt{m^2 \frac{\operatorname{Area}(\partial \Omega)^2}{\operatorname{Cap}(\overline{\Omega})^2} + \frac{1}{4}} \right)$$

and

$$\inf \{ |\lambda| : \ker(H + V_{\lambda} - a) \neq 0 \text{ for some } a \in (-m, m) \}$$

$$\leq 4 \left(-m \frac{\operatorname{Area}(\partial \Omega)}{\operatorname{Cap}(\overline{\Omega})} + \sqrt{m^2 \frac{\operatorname{Area}(\partial \Omega)^2}{\operatorname{Cap}(\overline{\Omega})^2} + \frac{1}{4}} \right)$$

In both cases, = holds $\iff \Omega$ is a ball.

Joint work with T. Ourmieres-Bonafos.

Recent work by

- -Benguria, Fournais, Stockmeyer, Van den Bosch
- -Behrndt, Exner, Holzmann, Lotoreichik
- -Behrndt, Holzmann

For $\lambda \in \mathbb{R}$, we introduce the matrix valued function:

$$\mathcal{P}_{\lambda} = \frac{\lambda}{2} + i(\alpha \cdot \mathbf{n}).$$

For $(u_+, u_-) \in H^1(\Omega_+)^4 \times H^1(\Omega_-)^4$ we define the following transmission condition in $H^{1/2}(\partial\Omega)^4$

(*)
$$\mathcal{P}_{\lambda} t_{\partial \Omega} u_{+} + \mathcal{P}_{\lambda}^{*} t_{\partial \Omega} u_{-} = 0, \quad \text{on } \partial \Omega.$$

Alternativaley, as \mathcal{P}_{λ} is invertible, we can see the transmission condition as

$$t_{\partial\Omega}u_{+} = \mathcal{R}_{\lambda}t_{\partial\Omega}u_{-}, \text{ with } \mathcal{R}_{\lambda} := \frac{1}{\lambda^{2}/4 + 1} \left(1 - \frac{\lambda^{2}}{4} + \lambda(i\alpha \cdot \mathbf{n})\right).$$

<u>Definition</u>.— Let $\lambda \in \mathbb{R}$ and $m \in \mathbb{R}$. The Dirac operator coupled with an electrostatic δ-shell interaction of strength λ is the operator $\left(\mathcal{H}_{\lambda}(m), \operatorname{dom}\left(\mathcal{H}_{\lambda}(m)\right)\right)$, acting on $L^{2}(\mathbb{R}^{3})^{4}$ and defined on the domain

$$\operatorname{dom}\left(\mathcal{H}_{\lambda}(m)\right) = \left\{ (u_{+}, u_{-}) \in H^{1}(\Omega_{+})^{4} \times H^{1}(\Omega_{-})^{4} : (u_{+}, u_{-}) \text{ satisfies } (*) \right\}$$

It acts in the sense of distributions as $\mathcal{H}_{\lambda}(m)u = \left(\mathcal{H}(m)u_{+}, \mathcal{H}(m)u_{-}\right)$ where we identify an element of $L^{2}(\Omega_{+})^{4} \times L^{2}(\Omega_{-})^{4}$ with an element of $L^{2}(\mathbb{R}^{3})^{4}$.

<u>Theorem.</u> Let $m \in \mathbb{R}$. The following holds:

- (i) If $\lambda \neq \pm 2$, the operator $(\mathcal{H}_{\lambda}(m), \text{dom}(\mathcal{H}_{\lambda}(m)))$ is self-adjoint.
- (ii) If $\lambda = \pm 2$, the operator $(\mathcal{H}_{\lambda}(m), \text{dom}(\mathcal{H}_{\lambda}(m)))$ is essentially self-adjoint and we have

$$\operatorname{dom}(\mathcal{H}_{\lambda}(m)) \subsetneq \operatorname{dom}(\overline{\mathcal{H}}_{\lambda}(m)) = \left\{ (u_{+}, u_{-}) \in H(\alpha, \Omega_{+}) \times H(\alpha, \Omega_{-}) : (u_{+}, u_{-}) \text{ satisfies } (*) \right\},\,$$

where the transmission condition holds in $H^{-1/2}(\partial\Omega)^4$.

Here:

•
$$H(\alpha, \Omega) := \left\{ u \in L^2(\Omega)^4 : \mathcal{H}u \in L^2(\Omega)^4 \right\} =$$

$$\left\{ u \in L^2(\Omega)^4 : (\alpha \cdot \mathbf{D})u \in L^2(\Omega)^4 \right\},$$

•
$$\alpha \cdot \mathbf{D} = \frac{1}{i} \alpha \cdot \nabla$$
.

Let $\varepsilon = \pm 1$ and $\lambda = 2\varepsilon$. Let $u = (u_+, u_-) \in \text{dom}(\mathcal{H}_{\lambda}(m)), u_{\pm}$ can be rewritten $u_{\pm} = (u_{\pm}^{[1]}, u_{\pm}^{[2]})$ and, for $x \in \partial \Omega$, the transmission condition reads

$$\begin{pmatrix} u_{+}^{[1]}(x) \\ u_{+}^{[2]}(x) \end{pmatrix} = \begin{pmatrix} 0 & -i\varepsilon\sigma \cdot \mathbf{n}(x) \\ -i\varepsilon\sigma \cdot \mathbf{n}(x) & 0 \end{pmatrix} \begin{pmatrix} u_{-}^{[1]}(x) \\ u_{-}^{[2]}(x) \end{pmatrix}$$
$$= \begin{pmatrix} -i\varepsilon\sigma \cdot \mathbf{n}u_{-}^{[2]}(x) \\ -i\varepsilon\sigma \cdot \mathbf{n}u_{-}^{[1]}(x) \end{pmatrix}.$$

For $u \in H^1(\mathbb{R}^3 \setminus \Omega)^4$, $\delta_{\partial\Omega}u$ is the distribution defined as

$$\langle \delta_{\partial\Omega} u, v \rangle := \frac{1}{2} \int_{\partial\Omega} \langle t_{\partial\Omega} u_+(x) + t_{\partial\Omega} u_-(x), v(x) \rangle_{\mathbb{C}^4} ds(x),$$

for all $v \in \mathcal{C}_0^{\infty}(\mathbb{R}^3)^4$.

We are interested in functions $u \in L^2(\mathbb{R}^3)^4$ such that

$$(\mathcal{H}(m) + \lambda \delta_{\partial\Omega}(x) \mathrm{Id}) u \in L^2(\mathbb{R}^3)^4.$$

For example, if $u = (u_+, u_-) \in H^1(\Omega_+)^4 \times H^1(\Omega_-)^4$, a computation in the sense of distributions yields

$$(\mathcal{H}(m) + \lambda \delta_{\partial\Omega}(x) \operatorname{Id}) u = \alpha \cdot \mathbf{D} u + m\beta u + \frac{\lambda}{2} (t_{\partial\Omega} u_+ + t_{\partial\Omega} u_-) \delta_{\partial\Omega}$$

$$= \{ (\alpha \cdot \mathbf{D}) u \} + m\beta u - i\alpha \cdot \mathbf{n} (t_{\partial\Omega} u_+ + t_{\partial\Omega} u_-) \delta_{\partial\Omega} + \frac{\lambda}{2} (t_{\partial\Omega} u_+ + t_{\partial\Omega} u_-) \delta_{\partial\Omega}$$

$$= \underbrace{\{ (\alpha \cdot \mathbf{D}) u \} + m\beta u}_{\in L^2(\mathbb{R}^3)^4} + \left(\frac{\lambda}{2} (t_{\partial\Omega} u_+ + t_{\partial\Omega} u_-) - i\alpha \cdot \mathbf{n} (t_{\partial\Omega} u_- - t_{\partial\Omega} u_+) \right) \delta_{\partial\Omega},$$

where we set

$$\{(\alpha \cdot \mathbf{D})u\}|_{\Omega_{\pm}} = (\alpha \cdot \mathbf{D})u_{\pm}.$$

Now, we would like the last term in the right-hand side to be zero. It reads:

$$\left(\frac{\lambda}{2}\operatorname{Id} + i\alpha \cdot \mathbf{n}\right)t_{\partial\Omega}u_{+} + \left(\frac{\lambda}{2}\operatorname{Id} - i\alpha \cdot \mathbf{n}\right)t_{\partial\Omega}u_{-} = 0.$$

In particular, it justifies that for $u \in \text{dom}(\mathcal{H}_{\lambda}(m))$, $\mathcal{H}_{\lambda}(m)u \in L^{2}(\mathbb{R}^{3})^{4}$.

<u>Proposition</u>. The trace operator $t_{\partial\Omega}$ extends into a continuous map $t_{\partial\Omega}: H(\alpha,\Omega) \to H^{-1/2}(\partial\Omega)^4$.

Theorem. $-\phi$ extends into a bounded operator from $H^{-1/2}(\partial\Omega)^p$ to $H(\alpha,\Omega)$.

The boundary integral operator is defined taking the boundary data of ϕ on $\partial\Omega$

$$C(g) = t_{\partial\Omega}(\phi(g)).$$

An important consequence:

Corollary.— The following operator is continuous:

$$C: H^{-1/2}(\partial\Omega)^4 \to H^{-1/2}(\partial\Omega)^4,$$

<u>Proposition</u>.– Let $u \in H(\alpha, \Omega)$. Assume that $t_{\partial\Omega}u \in H^{1/2}(\partial\Omega)^4$, then we have $u \in H^1(\Omega)^4$.

The Calderón projectors are the bounded linear operators from $H^{-1/2}(\partial\Omega)^4$ onto itself defined as:

$$C_{\pm} = \pm i C_{\pm} (\alpha \cdot \mathbf{n}).$$

As $\partial\Omega$ is \mathcal{C}^2 , the multiplication by $\alpha \cdot \mathbf{n}$ is a bounded linear operator from $H^{-1/2}(\partial\Omega)^4$ onto itself. Thus the definition makes sense.

Their formal adjoints are:

$$\mathcal{C}_{\pm}^* = \mp i(\alpha \cdot \mathbf{n})C_{\mp}.$$

By definition, C_{\pm}^* is a linear bounded operator from $H^{-1/2}(\partial\Omega)^4$ onto itself.

Proposition.— We have:

(i) $C'_{\pm} = C^*_{\pm}|_{H^{1/2}(\partial\Omega)^4}$ and $(C^*_{\pm})' = C_{\pm}|_{H^{1/2}(\partial\Omega)^4}$. In particular $C_{\pm}|_{H^{1/2}(\partial\Omega)^4}$ and $C^*_{\pm}|_{H^{1/2}(\partial\Omega)^4}$ are bounded operators from $H^{1/2}(\partial\Omega)^4$ onto itself,

(ii)
$$(\mathcal{C}_{\pm})^2 = \mathcal{C}_{\pm}$$
 and $(\mathcal{C}_{\pm}^*)^2 = \mathcal{C}_{\pm}^*$,

(iii)
$$\mathcal{C}_+ + \mathcal{C}_- = \operatorname{Id} \text{ and } \mathcal{C}_+^* + \mathcal{C}_-^* = \operatorname{Id},$$

(iv)
$$(\alpha \cdot \mathbf{n})\mathcal{C}_{\pm} = \mathcal{C}_{\mp}^*(\alpha \cdot \mathbf{n}) \text{ and } \mathcal{C}_{\pm}(\alpha \cdot \mathbf{n}) = (\alpha \cdot \mathbf{n})\mathcal{C}_{\mp}^*.$$

Note that the Calderón projectors satisfy:

$$\mathcal{C}_{\pm} - \mathcal{C}_{+}^{*} = \pm i\mathcal{A},$$

where \mathcal{A} does not depend on the sign \pm . Roughly speaking, \mathcal{A} measures the defect of self-adjointness of the Calderón projectors.

<u>Proposition</u>.— The operator \mathcal{A} extends into a bounded operator from $H^{-1/2}(\partial\Omega)^4$ to $H^{1/2}(\partial\Omega)^4$ and it is compact.

Self-adjointness

Let $u \in \text{dom} (\mathcal{H}_{\lambda}(m)^*)$

$$(**) \qquad \mathcal{P}_{\lambda} t_{\partial \Omega} u_{+} + \mathcal{P}_{\lambda}^{*} t_{\partial \Omega} u_{-} = 0.$$

We have:

$$(**) \iff \begin{cases} \mathcal{C}_{+}(\mathcal{P}_{\lambda}t_{\partial\Omega}u_{+} + \mathcal{P}_{\lambda}^{*}t_{\partial\Omega}u_{-}) &= 0 \\ \mathcal{C}_{-}(\mathcal{P}_{\lambda}t_{\partial\Omega}u_{+} + \mathcal{P}_{\lambda}^{*}t_{\partial\Omega}u_{-}) &= 0 \end{cases},$$

$$\iff \begin{cases} \frac{\lambda}{2} \left(\mathcal{C}_{+}(t_{\partial\Omega}u_{+}) + \mathcal{C}_{+}(t_{\partial\Omega}u_{-}) \right) + i(\alpha \cdot \mathbf{n}) \mathcal{C}_{-}^{*}(t_{\partial\Omega}u_{+} - t_{\partial\Omega}u_{-}) &= 0 \\ \frac{\lambda}{2} \left(\mathcal{C}_{-}(t_{\partial\Omega}u_{+}) + \mathcal{C}_{-}(t_{\partial\Omega}u_{-}) \right) + i(\alpha \cdot \mathbf{n}) \mathcal{C}_{+}^{*}(t_{\partial\Omega}u_{+} - t_{\partial\Omega}u_{-}) &= 0 \end{cases},$$

$$\iff \begin{cases} \frac{\lambda}{2} \Big(\mathcal{C}_{+}(t_{\partial\Omega}u_{+}) + \mathcal{C}_{+}(t_{\partial\Omega}u_{-}) \Big) + i(\alpha \cdot \mathbf{n}) \Big(\mathcal{C}_{-}(t_{\partial\Omega}u_{+}) - \mathcal{C}_{-}(t_{\partial\Omega}u_{-}) + i\mathcal{A}(t_{\partial\Omega}u_{+} - t_{\partial\Omega}u_{-}) \Big) &= 0 \\ \frac{\lambda}{2} \Big(\mathcal{C}_{-}(t_{\partial\Omega}u_{+}) + \mathcal{C}_{-}(t_{\partial\Omega}u_{-}) \Big) + i(\alpha \cdot \mathbf{n}) \Big(\mathcal{C}_{+}(t_{\partial\Omega}u_{+}) - \mathcal{C}_{+}(t_{\partial\Omega}u_{-}) - i\mathcal{A}(t_{\partial\Omega}u_{+} - t_{\partial\Omega}u_{-}) \Big) &= 0 \end{cases}$$

This system rewrites as:

$$\begin{pmatrix} \frac{\lambda}{2} & -i\alpha \cdot \mathbf{n} \\ i\alpha \cdot \mathbf{n} & \frac{\lambda}{2} \end{pmatrix} \begin{pmatrix} \mathcal{C}_{+}(t_{\partial\Omega}u_{+}) \\ \mathcal{C}_{-}(t_{\partial\Omega}u_{-}) \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{\lambda}{2} & -i\alpha \cdot \mathbf{n} \\ i\alpha \cdot \mathbf{n} & -\frac{\lambda}{2} \end{pmatrix} \begin{pmatrix} \mathcal{C}_{+}(t_{\partial\Omega}u_{-}) \\ \mathcal{C}_{-}(t_{\partial\Omega}u_{+}) \end{pmatrix} + \begin{pmatrix} (\alpha \cdot \mathbf{n})\mathcal{A}(t_{\partial\Omega}u_{+} - t_{\partial\Omega}u_{-}) \\ -(\alpha \cdot \mathbf{n})\mathcal{A}(t_{\partial\Omega}u_{+} - t_{\partial\Omega}u_{-}) \end{pmatrix}.$$

The right-hand side is in $H^{1/2}(\partial \omega)^8$ and the matrix in the left-hand side is invertible in $H^{1/2}(\partial \Omega)^8$ as long as $\lambda \neq \pm 2$. Thus $t_{\partial\Omega}u_{\pm} \in H^{1/2}(\partial\Omega)^4$ and dom $(\mathcal{H}_{\lambda}(m)^*) \subset \text{dom}(\mathcal{H}_{\lambda}(m))$. The reciprocal inclusion is similar.

Essential self-adjointness when $\lambda = \pm 2$

Proposition. – $\lambda^2 = 4$.

$$\operatorname{dom}\left(\mathcal{H}_{\lambda}(m)^{*}\right) = \left\{ (u_{+}, u_{-}) \in H(\alpha, \Omega_{+}) \times H(\alpha, \Omega_{-}) : (u_{+}, u_{-}) \text{ satisfies } (*) \text{ in } H^{-1/2}(\partial \Omega)^{4} \right\}.$$

Proposition.– Let $\lambda^2 = 4$. The following holds:

$$\overline{\mathcal{H}_{\lambda}(m)} = \mathcal{H}_{\lambda}^*(m).$$

In particular, $\overline{\mathcal{H}_{\lambda}(m)}$ is self-adjoint.

For $u \in \text{dom}(\mathcal{H}_{\lambda}(m)^*)$, Transmission condition reads

$$(***) t_{\partial\Omega}u_{+} = i\varepsilon(\alpha \cdot \mathbf{n})t_{\partial\Omega}u_{-}, \varepsilon = \pm 1$$

as an equality in $H^{-1/2}(\partial\Omega)^4$.

For $u = (u_+, u_-) \in \text{dom}(\mathcal{H}_{\lambda}(m)^*)$, if $(f_n)_{n \in \mathbb{N}}$ is a sequence of functions $\mathcal{C}^{\infty}(\partial\Omega)^4$ that converges to $t_{\partial\Omega}u_-$ in the $\|\cdot\|_{H^{-1/2}(\partial\Omega)^4}$ -norm, we introduce:

Lemma. Let $u = (u_+, u_-) \in \text{dom}(\mathcal{H}_{\lambda}(m)^*)$ and $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions $\mathcal{C}^{\infty}(\partial\Omega)^4$ that converges to $t_{\partial\Omega}u_-$ in the $\|\cdot\|_{H^{-1/2}(\partial\Omega)^4}$ -norm. If $u_n = (u_{n,-}, u_{n,+})$ is the sequence defined in (****) then:

- (i) $u_n \in H^1(\Omega_+)^4 \times H^1(\Omega_-)^4$,
- (ii) $(u_{n,+}, u_{n,-})$ satisfies Transmission condition (* * *) in $H^{1/2}(\partial\Omega)^4$,
- (iii) u_n converges to u in the $\|\cdot\|_{H(\alpha,\Omega_+)\times H(\alpha,\Omega_-)}$ -norm.

$$dom (\mathcal{H}_{\lambda}(m)) \subsetneq dom (\overline{\mathcal{H}}_{\lambda}(m)) :$$

Let $0 \neq f \in H^{-1/2}(\partial\Omega)^4$ such that $f \notin H^{1/2}(\partial\Omega)^4$. Either $\mathcal{C}_+(f)$ or $\mathcal{C}_-(f)$ does not belong to $H^{1/2}(\partial\Omega)$. Assume $\mathcal{C}_-(f) \notin H^{1/2}(\partial\Omega)^4$, we set $g = \mathcal{C}_-(f)$. We consider the function

$$u = (u_+, u_-) = \left(\varepsilon \phi_+(g) - \varepsilon E_+ \left(\mathcal{A}((\alpha \cdot \mathbf{n})g)\right), \phi_-((i\alpha \cdot \mathbf{n})g)\right), \quad (\varepsilon = \pm 1),$$

By definition, $u \in H(\alpha, \Omega_+) \times H(\alpha, \Omega_-)$ and we have:

$$i\varepsilon(\alpha \cdot \mathbf{n})t_{\partial\Omega}u_{-} = -i\varepsilon(\alpha \cdot \mathbf{n})\mathcal{C}_{-}(g)$$

$$= -\varepsilon i\mathcal{C}_{+}((\alpha \cdot \mathbf{n})g) - \varepsilon\mathcal{A}((\alpha \cdot \mathbf{n})g)$$

$$= t_{\partial\Omega}u_{+}.$$

Hence u satisfies Transmission condition which gives $u \in \text{dom}(\overline{\mathcal{H}_{\lambda}(m)})$. However, $u \notin \text{dom}(\mathcal{H}_{\lambda}(m))$, otherwise $t_{\partial\Omega}u_{-} \in H^{1/2}(\partial\Omega)^{4}$ which is not possible because $t_{\partial\Omega}u_{-} = -g = -\mathcal{C}_{-}(f) \notin H^{1/2}(\partial\Omega)^{4}$.

THANK YOU FOR YOUR ATTENTION