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The Operator

• If x 2 R3
then  =

✓
�

�

◆
, �,� 2 C2

(spinors).

• V: “critical” 1

�

V
⇣
x

�

⌘
⇠ V(x)

Example: Coulomb V =

��

|x|

• @t = iH ; H = H0 + V ,  =  (x, t) , V(x)
hermitian

• H0 =
1

i
↵ ·r+m�

• H2
0 = ��+m2

↵ · ↵ = ↵ = (↵j)
↵� + ↵� = 0
↵j↵k + ↵k↵j = 0 j 6= k ; ↵2

j = j = 1, 2, 3



General Questions

(a) Self–adjointness.

(b) Spectrum: Characterization of the ground state by the “right

inequality”.

Similar questions for a non linear V always assume some

smallness condition on V.

(c) What is a small/big perturbation of H0?



Coulomb Potential

• H0 �
�

|x|

(a) Self–adjointness: Rellich ’53, Schminke ’72, Wust ’75,

Nenciu ’76, Kato ’80– ’83 (Kato–Nenciu inequality)

Final answer: |�| < 1.

(b) “Ground state” (� > 0) Minimization process (Dolbeault,
Esteban, Séré ’00):

– Variational inequality for �

✓
 =

✓
�
�

◆◆
.

– Hardy–Kato–Nenciu type inequalities (Dolbeault,
Duoandikoetxea, Esteban, Loss, V. ’00).



Recall Birman–Schwinger principle:
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�(a)

◆
⇠ h(H � a)�2ga, gai = k(H � a)�1gak2 � 0

(assume ga independent of a)

This suggests another way of obtaining the ground state for the

Coulomb potential V (x) = � �

|x| :

The inequality is optimal and it is achieved for A > 0 by the ground

state of Va(x) = �m

2 � a

2

m

2

1

|x| .

(Arrizabalaga, Duoandikoetxea, V. ’13; Cassano,
Pizzichilo, V. ’17)
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• 2Re hS , A i = h(SA�AS) , i if S⇤ = S and A⇤ = �A.

• 2Re hA1 , A2 i = �h(A1A2 +A2A1) , i if A⇤
1 = �A1 and

A⇤
2 = �A2.

In our case the right choice is:

#
A1

#
S

#
A2

The proof is a consequence of the “uncertainty principle”.

2Re h(↵ ·r+ i(m� + a)) , (1 + � · L) ↵ · x

|x|

⇣
a

m

� + 1
⌘
i.





(a) Self-Adjointess

If � 6= ±2 =) H + V� is self-adjoint on D(H + V�).

0

@
[Arrizabalaga, Mas, V., 2014],

more general [Posilicano, 2008]

⌦ ball �! [Dittrich, Exner, Seba, 1989]
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Therefore, ker(H + V� � a) 6= 0 =) |�| 2 [�l(@⌦),�u(@⌦)]

(
(a)
=) |�| � �l(@⌦) > 0 and �l(@⌦)  2
(b)
=) |�|  �u(@⌦) < +1 and �u(@⌦) � 2

(b) Point Spectrum on (�m,m) for H + V�



Theorem [AMV2016].– ⌦ ⇢ R3
bounded smooth domain. If

m
Area(@⌦)

Cap(⌦)

>
1
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p
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,

then

sup {|�| : ker(H + V� � a) 6= 0 for some a 2 (�m,m)}

� 4

 
m
Area(@⌦)

Cap(⌦)

+

s

m2
Area(@⌦)2

Cap(⌦)

2
+

1

4

!

and

inf {|�| : ker(H + V� � a) 6= 0 for some a 2 (�m,m)}

 4

 
�m

Area(@⌦)

Cap(⌦)

+
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m2
Area(@⌦)2

Cap(⌦)

2
+

1

4
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In both cases, = holds () ⌦ is a ball.



Joint work with T. Ourmieres-Bonafos. 

Recent work by 

-Benguria, Fournais, Stockmeyer, Van den Bosch 
-Behrndt, Exner, Holzmann, Lotoreichik 
-Behrndt, Holzmann 



For � 2 R, we introduce the matrix valued function:

P� =
�

2
+ i(↵ · n).

For (u+, u�) 2 H1
(⌦+)

4 ⇥H1
(⌦�)

4
we define the following trans-

mission condition in H1/2
(@⌦)4

Alternativaley, as P� is invertible, we can see the transmission con-

dition as

(⇤) P�t@⌦u+ + P⇤
�t@⌦u� = 0, on @⌦.

t@⌦u+ = R�t@⌦u�, with R� :=
1

�2/4 + 1

�
1� �2

4
+ �(i↵ · n)

�
.



Definition.– Let � 2 R and m 2 R. The Dirac operator coupled

with an electrostatic �–shell interaction of strength � is the opera-

tor

⇣
H�(m), dom (H�(m))

⌘
, acting on L2

(R3
)

4
and defined on the

domain

dom

⇣

H�(m)

⌘

=

n

(u+, u�) 2 H1
(⌦+)

4⇥H1
(⌦�)

4
: (u+, u�) satisfies (⇤)

o

It acts in the sense of distributions as H�(m)u =⇣
H(m)u+,H(m)u�

⌘
where we identify an element of

L2
(⌦+)

4 ⇥ L2
(⌦�)

4
with an element of L2

(R3
)

4
.



Theorem.– Let m 2 R. The following holds:

(i) If � 6= ±2, the operator

⇣

H�(m), dom
�H�(m)

�

⌘

is self-

adjoint.

(ii) If � = ±2, the operator

⇣

H�(m), dom
�H�(m)

�

⌘

is essentially

self-adjoint and we have

dom (H�(m)) ( dom (H�(m)) =

n

(u+, u�) 2 H(↵,⌦+)⇥H(↵,⌦�) : (u+, u�) satisfies (⇤)
o

,

where the transmission condition holds in H�1/2
(@⌦)4.



• H(↵,⌦) :=
n

u 2 L2(⌦)4 : Hu 2 L2(⌦)4
o

=

n

u 2 L2(⌦)4 : (↵ ·D)u 2 L2(⌦)4
o

,

Here:

• ↵ ·D =
1

i
↵ ·r.

Let " = ±1 and � = 2". Let u = (u+, u�) 2 dom

�H�(m)

�
, u±

can be rewritten u± = (u

[1]
± , u

[2]
± ) and, for x 2 @⌦, the transmission

condition reads

 
u

[1]
+ (x)

u

[2]
+ (x)

!
=

✓
0 �i"� · n(x)

�i"� · n(x) 0

◆ 
u

[1]
� (x)

u

[2]
� (x)

!

=

 
�i"� · nu[2]

� (x)

�i"� · nu[1]
� (x)

!
.



For u 2 H1
(R3 \ ⌦)4, �@⌦u is the distribution defined as

h�@⌦u, vi :=
1

2

Z

@⌦
ht@⌦u+(x) + t@⌦u�(x), v(x)iC4

ds(x),

for all v 2 C1
0 (R3

)

4
.

We are interested in functions u 2 L

2
(R3

)

4
such that

�H(m) + ��@⌦(x)Id
�
u 2 L

2
(R3

)

4
.

For example, if u = (u+, u�) 2 H1
(⌦+)

4 ⇥H1
(⌦�)

4
, a computa-

tion in the sense of distributions yields

�H(m) + ��@⌦(x)Id
�
u

= ↵ ·Du+m�u+
�

2
(t@⌦u+ + t@⌦u�) �@⌦

= {(↵ ·D)u}+m�u� i↵ · n (t@⌦u+ + t@⌦u�) �@⌦ +
�

2
(t@⌦u+ + t@⌦u�) �@⌦

= {(↵ ·D)u}+m�u| {z }
2L2(R3)4

+

✓
�

2
(t@⌦u+ + t@⌦u�)� i↵ · n(t@⌦u� � t@⌦u+)

◆
�@⌦,



where we set

{(↵ ·D)u}|⌦± = (↵ ·D)u±.

Now, we would like the last term in the right-hand side to be zero.

It reads:

✓
�

2
Id + i↵ · n

◆
t@⌦u+ +

✓
�

2
Id� i↵ · n

◆
t@⌦u� = 0.

In particular, it justifies that for u 2 dom

�H�(m)

�
, H�(m)u 2

L2
(R3

)

4
.

Proposition.– The trace operator t@⌦ extends into a continuous

map t@⌦ : H(↵,⌦) ! H�1/2
(@⌦)4.



Theorem.– � extends into a bounded operator from H�1/2
(@⌦)p

to H(↵,⌦).

The boundary integral operator is defined taking the boundary

data of � on @⌦

C(g) = t@⌦
�
�(g)

�
.

An important consequence:

Corollary.– The following operator is continuous:

C : H�1/2
(@⌦)4 ! H�1/2

(@⌦)4,

Proposition.– Let u 2 H(↵,⌦). Assume that t@⌦u 2 H1/2(@⌦)4,
then we have u 2 H1(⌦)4.



As @⌦ is C2
, the multiplication by ↵ ·n is a bounded linear operator

from H�1/2
(@⌦)4 onto itself. Thus the definition makes sense.

Their formal adjoints are:

C⇤
± = ⌥i(↵ · n)C⌥.

By definition, C⇤
± is a linear bounded operator from H�1/2

(@⌦)4

onto itself.

The Calderón projectors are the bounded linear operators from

H�1/2
(@⌦)4 onto itself defined as:

C± = ±iC±(↵ · n).



Proposition.– We have:

(i) C0
± = C⇤

±|H1/2(@⌦)4 and (C⇤
±)

0
= C±|H1/2(@⌦)4 . In particular

C±|H1/2(@⌦)4 and C⇤
±|H1/2(@⌦)4 are bounded operators from

H1/2
(@⌦)4 onto itself,

(ii) (C±)2 = C± and (C⇤
±)

2 = C⇤
±,

(iii) C+ + C� = Id and C⇤
+ + C⇤

� = Id,

(iv) (↵ · n)C± = C⇤
⌥(↵ · n) and C±(↵ · n) = (↵ · n)C⇤

⌥.



Note that the Calderón projectors satisfy:

C± � C⇤
± = ±iA,

Proposition.– The operator A extends into a bounded operator

from H�1/2
(@⌦)4 to H1/2

(@⌦)4 and it is compact.

where A does not depend on the sign ±. Roughly speaking, A
measures the defect of self-adjointness of the Calderón projectors.



Self-adjointness

Let u 2 dom

�H�(m)

⇤�

(⇤⇤) P�t@⌦u+ + P⇤
�t@⌦u� = 0.

We have:

(⇤⇤) ()
⇢

C+
�
P�t@⌦u+ + P⇤

�t@⌦u�
�

= 0
C�

�
P�t@⌦u+ + P⇤

�t@⌦u�
�

= 0
,

()

8
>>><

>>>:

�

2

⇣
C+(t@⌦u+) + C+(t@⌦u�)

⌘
+ i(↵ · n)C⇤

�(t@⌦u+ � t@⌦u�) = 0

�

2

⇣
C�(t@⌦u+) + C�(t@⌦u�)

⌘
+ i(↵ · n)C⇤

+(t@⌦u+ � t@⌦u�) = 0

,

()

8
>>><

>>>:

�

2

⇣
C+(t@⌦u+) + C+(t@⌦u�)

⌘
+ i(↵ · n)

⇣
C�(t@⌦u+)� C�(t@⌦u�) + iA(t@⌦u+ � t@⌦u�)

⌘
= 0

�

2

⇣
C�(t@⌦u+) + C�(t@⌦u�)

⌘
+ i(↵ · n)

⇣
C+(t@⌦u+)� C+(t@⌦u�)� iA(t@⌦u+ � t@⌦u�)

⌘
= 0

.



This system rewrites as:

✓
�
2 �i↵ · n

i↵ · n �
2

◆✓
C+(t@⌦u+)
C�(t@⌦u�)

◆

=

✓
��

2 �i↵ · n
i↵ · n ��

2

◆✓
C+(t@⌦u�)
C�(t@⌦u+)

◆
+

✓
(↵ · n)A(t@⌦u+ � t@⌦u�)
�(↵ · n)A(t@⌦u+ � t@⌦u�)

◆
.

The right-hand side is in H1/2
(@!)8 and the matrix in the left-

hand side is invertible in H1/2
(@⌦)8 as long as � 6= ±2. Thus

t@⌦u± 2 H1/2
(@⌦)4 and dom

�H�(m)

⇤� ⇢ dom

�H�(m)

�
. The

reciprocal inclusion is similar.



Essential self-adjointness when � = ±2

Proposition.– �2 = 4.

dom (H�(m)

⇤
) =

n
(u+, u�) 2 H(↵,⌦+)⇥H(↵,⌦�) : (u+, u�) satisfies (⇤) in H�1/2

(@⌦)4}.

Proposition.– Let �2
= 4. The following holds:

H�(m) = H⇤
�(m).

In particular, H�(m) is self-adjoint.

For u 2 dom (H�(m)

⇤
), Transmission condition reads

(⇤ ⇤ ⇤) t@⌦u+ = i"(↵ · n)t@⌦u�, " = ±1

as an equality in H�1/2(@⌦)4.



For u = (u+, u�) 2 dom (H�(m)

⇤
), if (fn)n2N is a sequence of

functions C1
(@⌦)4 that converges to t@⌦u� in the k · kH�1/2(@⌦)4 -

norm, we introduce:

(⇤ ⇤ ⇤⇤)

8
<

:
un,� = u� + i��

⇣
(↵ · n)(t@⌦u� � fn)

⌘
,

un,+ = u+ � "�+(fn � t@⌦u�) + "E+

⇣
A
�
(↵ · n)(fn � t@⌦u�)

�⌘
,

Lemma.– Let u = (u+, u�) 2 dom (H�(m)

⇤
) and (fn)n2N be a

sequence of functions C1
(@⌦)4 that converges to t@⌦u� in the k ·

kH�1/2(@⌦)4 -norm. If un = (un,�, un,+) is the sequence defined in

(⇤ ⇤ ⇤⇤) then:
(i) un 2 H1(⌦+)4 ⇥H1(⌦�)4,

(ii) (un,+, un,�) satisfies Transmission condition (⇤ ⇤ ⇤) in

H1/2
(@⌦)4,

(iii) un converges to u in the k · kH(↵,⌦+)⇥H(↵,⌦�)-norm.



u = (u+, u�) =

 
"�+(g)� "E+

⇣
A
�
(↵ · n)g

�⌘
,��

�
(i↵ · n)g

�
!
, (" = ±1),

By definition, u 2 H(↵,⌦+)⇥H(↵,⌦�) and we have:

i"(↵ · n)t@⌦u� = �i"(↵ · n)C�(g)
= �"iC+

�
(↵ · n)g

�
� "A

�
(↵ · n)g

�

= t@⌦u+.

Hence u satisfies Transmission condition which gives u 2
dom

�H�(m)
�
. However, u /2 dom (H�(m)), otherwise t@⌦u� 2

H1/2(@⌦)4 which is not possible because t@⌦u� = �g = �C�(f) /2
H1/2(@⌦)4.

dom (H�(m)) ( dom (H�(m)) :

Let 0 6= f 2 H�1/2
(@⌦)4 such that f /2 H1/2

(@⌦)4. Either

C+(f) or C�(f) does not belong to H1/2
(@⌦). Assume C�(f) /2

H1/2
(@⌦)4, we set g = C�(f). We consider the function
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