SINGULAR PERTURBATIONS OF DIRAC
HAMILTONIANS: selfadjointness and
spectrum.
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The Operator

e O =iHy ; H = Ho+V
hermitian
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o H: = —A+m?
a-a=1 a = (o)

af +af =0
;o + aga; =0 j#k 5 o =1 7=1,2.3

o If z € R3 then ¢ = ( i ), ¢, x € C? (spinors).
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General Questions

(a) Self-adjointness.

(b) Spectrum: Characterization of the ground state by the “right
inequality”.

Similar questions for a non linear V always assume some
smallness condition on V.

(c) What is a small /big perturbation of Hy?



Coulomb Potential

A
o Hy — —
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(a) Self-adjointness: Rellich ’53, Schminke ’72, Wust ’75,
Nenciu ’76, Kato 80— ’83 (Kato—Nenciu inequality)

Final answer: |A| < 1.

(b) “Ground state” (A > 0) Minimization process (Dolbeault,
Esteban, Séré ’00):

X

— Hardy—Kato—Nenciu type inequalities (Dolbeault,
Duoandikoetxea, Esteban, Loss, V. ’00).

— Variational inequality for ¢ (@b = ( ¢ ))



Recall Birman—Schwinger principle:

dci, ()\(1@)> ~{(H = a)"*9a, ga) = |(H = a) " gal* = 0

(assume g, independent of a)

This suggests another way of obtaining the ground state for the
Coulomb potential V(x) = ——:
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m? |
(Arrizabalaga, Duoandikoetxea, V. ’13; Cassano,
Pizzichilo, V. ’17)
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(la-v—l—mﬁ—l—a)w

The inequality is optimal and it is achieved for A > 0 by the ground

m? —a? 1

state of V,(x) = — e
m T



The proof is a consequence of the “uncertainty principle”.
o 2Re (S, AY) = ((SA — AS)y, ) if S* =85 and A* = —A.

e 2Re <A1¢,A2¢> = —<(A1A2 + A2A1)¢,¢> if AT = —Al and
A = —As,

In our case the right choice is:

2Re<(a-V—|—z’(m6+a))¢,(1—|—0-L)]1a-‘i—| (%5@)»
J A

A1 S A2



Electrostatic Shell Interactions:

) ¢ R3 bounded smooth domain
o = surface measure on 09X

N = outward unit normal vector field on 9f2

Electrostatic shell potential V) = Adsq:

A
A €ER, Va(p) = 5 (p+ +¢-)

¢+ = non-tangential boundary values of ¢ : R3 — C4
when approaching from Q or R°\

Electrostatic shell interaction for H: H + V)



(a) Self-Adjointess

IfA\#+2 = H + V), isself-adjoint on D(H + V).

[Arrizabalaga, Mas, V., 2014],
more general [Posilicano, 2008]
(2 ball — [Dittrich, Exner, Seba, 1989]

a € (—m,m)
o—VmI—a? |z|

47 ||

¢ (z) = [a +mB + (1 —V/m? — a2 |a:|) ia - #}

= fundamental solution of H — a

D(H+W)={¢: ¢=0¢°*(Gdz+gdo), G € L*(R?)* g € L3(99)",

A (90 (Gdz)) |y = — (1+2C8q) 9) }

where Cyq(g)(z) = lim ¢*(z —y)g(y)do(y) , = € ON.
e—0 |~’B—y|>€



(b) Point Spectrum on (—m,m) for H + V)

Birman—Schwinger principle: a € (—m,m), XeR\{0},

ker(H+Vy—a)#0 << ker(%-i—CgQ) #0

(problem in R?) (problem in 0Q)
Properties of C5,, a € [—-m,m|:

(a) C%, bounded self-adjoint operator in L2(9)%.

3
. 5 1 _ multiplication
(b) [CBQ(O‘ ' N)] = _ZId' (a IV = Zl a;iN; operator )
J:

()

1 >
ker (X -{-ng) 0 { = Al =2 N(09) >0 and X\ (09)

<2
LL A < A,(09) < 400 and A, (99) > 2

Therefore, ker(H + V) —a) #0 = |A| € [N(09), Ay, (09)]



Theorem [AMV2016].— Q C R® bounded smooth domain. If

Area(09) 1

m — > —F=

Cap() ~ 4v2

then

sup {|\| : ker(H + V) —a) # 0 for some a € (—m,m)}
2
> 4 mArea(@_Q) v Area((?_Q) N 1
Cap(£2) Cap(€2)* 4

inf {|A| : ker(H + V), —a) # 0 for some a € (—m,m)}
2
<4 (_mArea((?Q) N \/m2 Area((?_Q) N 1>

and

Cap(£2) Cap(€2)? 4

In both cases, = holds <= () is a ball.



Joint work with T. Ourmieres-Bonafos.
Recent work by
-Benguria, Fournais, Stockmeyer, Van den Bosch

-Behrndt, Exner, Holzmann, Lotoreichik
-Behrndt, Holzmann



For A\ € R, we introduce the matrix valued function:

A

For (up,u_) € HY(Q,)* x HY(Q_)?* we define the following trans-
mission condition in H'/2(0€2)*

() Pirtoous + Pitoqu_ =0, on 0.

Alternativaley, as P, is invertible, we can see the transmission con-
dition as
1 A2

)\2/4+1(1—z+)\(ia-n)).

tous = Ratoqu—_, with Ry =



Definition.— Let A € R and m € R. The Dirac operator coupled
with an electrostatic d—shell interaction of strength )\ is the opera-

tor (Hx(m), dom (”HA(m))), acting on L?(R?)% and defined on the

domain

dom (Hk(m)) = {(u+,u_) e H'(Q)*xH' (Q_)* : (uy,u_) satisfies (*)}

It acts in the sense of distributions as Hy(m)u =
(H(m)u+, H(m)u_) where we identify an element of
L?(24)* x L?(2_)* with an element of L?(R?)%.



Theorem.— Let m € R. The following holds:

(i) If A\ # +2, the operator (HA(m),dom (HA(m))) is self-

adjoint.

(ii) If A = £2, the operator (7—[,\(m), dom (H,\(m))) is essentially
self-adjoint and we have

dom (F (m)) € dom (Fx (m)) =
{(u+,u_) € H(a,Q1) X H(a, ) : (uy,u_) satisfies (*)},

where the transmission condition holds in H~/2(9)%.



Here:

o H(e,Q) = {ueI?Q)": Hue L)'} =

{u c L2 : (a-Due L2(Q)4},

Let ¢ = £1 and A = 2e. Let u = (uy,u_) € dom (Hx(m)), us

can be rewritten u4 = (ui],u[ﬁ]) and, for x € 9L, the transmission

condition reads



For u € HY(R?\ Q)%, dpqu is the distribution defined as

1
(boqu, v) := 5/ (taquy () + tau—_(x),v(x))cads(z),
o9
for all v € C§°(R3)%.
We are interested in functions u € L?(R3)% such that
(H(m) + Moa(z)Id)u € L*(R?)*.

For example, if u = (uy,u_) € H(Q)* x H(Q_)*, a computa-
tion in the sense of distributions yields

A
(H(m) + Asn (:L‘)Id)u = o - Du+ mpu+ 5 (tagu+ + taQu_) Jo0)

. A
= {(a-D)u} + mpPu — ia - n (togqui + tagu_) doq + B (tous + taqu_) don

5

A
= {(O{ . D)u} + mpPu + ( toqu4 + taQU_) — Q- n(taQU_ — taQu+)) do0,

€L2(R3)4



where we set
{(a-D)utla, = (a-D)u.

Now, we would like the last term in the right-hand side to be zero.
It reads:

A A
(§Id + i - n) touy + (§Id — 1 H) tou— = 0.

In particular, it justifies that for u € dom (Hx(m)), Ha(m)u €
LQ(R3)4.

Proposition.— The trace operator tyn extends into a continuous
map tpa : H(a, Q) — H=2(00)%.




Theorem.— ¢ extends into a bounded operator from H~/2(90)P
to H(a, Q).

The boundary integral operator is defined taking the boundary
data of ¢ on 0Of)

C(g) = taa(o(g))-

An important consequence:

Corollary.— The following operator is continuous:

C:H 2 00)* - H2(60)%,

Proposition.— Let u € H(a, (). Assume that tgqu € H1/2(8Q)4,
then we have u € H!(Q)%.




The Calderén projectors are the bounded linear operators from
H~1/2(00)* onto itself defined as:

C+ =+iCi(a-n).

As 0 is C?, the multiplication by a:-n is a bounded linear operator
from H~/2(09Q)* onto itself. Thus the definition makes sense.

Their formal adjoints are:

Ci =Fi(a-n)Cx.

By definition, C% is a linear bounded operator from H~1/2(9)4
onto itself.



Proposition.— We have:

(i) CL = Ci|gr290)s and (CL)" = Cx|gi/2(9q)s- In particular
Ctlprzan)r and CL|gi/2(pq)e are bounded operators from
H'/2(00)* onto itself,

(ii) (C+)? =C4 and (C})? =Cx,
(iii) C; +C_ =1Id and C% +C* =1d,

(iv) (a-n)Cx =Ci(a-n) and CL(a-n) = (a-n)Cx.



Note that the Calderén projectors satisty:
Ci —CiL = +iA,

where A does not depend on the sign . Roughly speaking, A
measures the defect of self-adjointness of the Calderén projectors.

Proposition.— The operator A extends into a bounded operator
from H~Y2(00Q)* to H/2(0Q)* and it is compact.




Self-adjointness

Let u € dom (Hx(m)*)

(%) Pirtoqus + Pitoqu_ = 0.
We have:
Cy (PAtaQu+ + Pjtagu_) — 0
(**) — { C_ (PAtaQ/u’—f— —I-P;itagu_) — 0
( >\ | )
5 (C—|— (taﬁu+) + C_|_ (tagu_)) + Z(Oé . H)C_ (t89u+ . taQU_) — 0
> < |
A
[ 2 (C_(t69u+) T C—(taﬁu—)> +i(a-n)CY (taquy —toqu-) = 0

Co (tonuy) +Cy (tagu_)> +i(a-n) <C_(tagu+) — C_(toou_) + iAltoqu, — tagu_)>

N> N>
N\

/N

C_ (taQu+) +C_ (tagu_)> + i(a . n) <C+ (taQU+) —Cy (tggu_) — iA(taQu+ — taQu_)>



This system rewrites as:

2 —ia-n Ci(toquL)
(T 4| % C—(toqu-)
B — —j - n Ct(toqu—) (- n)A(tagqus — toqu—)
o ( i n —% ) ( Ct(tzgug ) T ( —(a - n).A(?an:L; —?agu_) ) '

The right-hand side is in H'/?2(0w)® and the matrix in the left-
hand side is invertible in H'/2(9Q)® as long as A # 2. Thus

toqusr € HY2(0Q)* and dom (Hr(m)*) C dom (Hr(m)). The
reciprocal inclusion is similar.

N[>~



Essential self-adjointness when A = 42

Proposition.— \? = 4.

dom (Hx(m)*) = {(u+,u_) € H(o, Q)X H(a,Q_) : (uy,u_) satisfies () in H~Y/2(0Q)*}.

Proposition.— Let \? = 4. The following holds:

Ha(m) = Hx(m).

In particular, Hy(m) is self-adjoint.

For u € dom (H(m)*), Transmission condition reads
(% * %) toquy = te(a - n)tgou_, e ==l

as an equality in H~/2(90Q)*.



For v = (ug,u_) € dom (Hx(m)*), if (fn)nen is a sequence of
functions C*°(9€2)* that converges to tapqu_ in the || - || g-1/2(50)1-
norm, we introduce:

T u +ig- ((a-n)(taau_ — fa)),
Uy = g =6y (fu—toou) + By (A((a- m)(fu — toou_))),

Lemma.— Let u = (uy,u_) € dom (Hx(m)*) and (fn)nen be a
sequence of functions C*°(9Q)* that converges to tpqu_ in the || -

| -1/2(90)a-norm. If u, = (un,—,upn, 4 ) is the sequence defined in
(s *x) then:

() un € H'(Q4)" x HY(Q_),

(ii) (wp,4,upn,—) satisfies Transmission condition (x * *) in

H1/2(8Q)4,

(iii) w, converges to u in the || - ||z (0,0, )x H(a,0_)-nOTM.



dom (Hx(m)) € dom (Hx(m)) :

Let 0 # f € HY2(00)* such that f ¢ HY2(0Q)*. Either
C.(f) or C_(f) does not belong to HY2(9)). Assume C_(f) ¢
H'/2(00)*, we set g = C_(f). We consider the function

u= (ug,us) = <s¢+<g> B, (A((wn>g)),¢<<m-n>g)>, (e = £1)

By definition, v € H(«, Q) x H(a,2_) and we have:

i&‘(Oz : n)tagu_ = —ig(oz ' n)C_ (g)
= —¢ciCy ((a-n)g) —eA((a-n)g)
= loU.

Hence wu satisfies Transmission condition which gives u €&

dom (Hx(m)). However, u ¢ dom (Hx(m)), otherwise tgou_ €

H'/2(0Q)* which is not possible because tgou_ = —g = —C_(f) ¢
HY2(90),



THANK YOU FOR YOUR
ATTENTION



